Nav: Home

A 'pause button' for cells

April 14, 2016

Throughout our cells, materials are continuously transported via tiny packets called vesicles. This process is called intracellular trafficking and it is crucial for the normal functioning of cells. Controlling intracellular membranes, such as vesicles, is a seemingly impossible proposition, but researchers at the Center for Cognition and Sociality within the Institute for Basic Science (IBS) have created an optogenetic process, called "light-activated reversible inhibition by assembled trap of intracellular membranes" (IM-LARIAT) that allows for the observation and control membranes that populate our cells.

The IBS team designed a light-induced intracellular "pause button" that causes two protein congregates to clump together. The clumping becomes larger in size with increasing intensity and length of light which inhibit the movements of membranes. The first congregate consists of 3 components: CIB1, an attractor that grabs onto CRY2; RFP, a marker that fluoresces red under light, and Rab GTPase, a protein that binds to the vesicle membranes within the cell. The second congregate is made up of two parts: YFP, a marker protein that fluoresces yellow under light and CRY2, an optogenetically enhanced protein activated by light that attracts protein CIB1 as well as other CRY2. In this case, when a blue light is applied, two proteins are attracted to each other causing them to clump together much like the way metal filings are attracted to a magnet.

To make the protein conjugates, the team transfected their DNA into cells which used it to translate the proteins in each cell. The conjugate with the Rab GTPase found its way to the vesicle membranes and affixed itself in place, holding tight. At the same time, the other protein conjugate containing CRY2 was free to move within the cell.

When a blue light was applied to the cell, the CRY2 was activated, moving toward the CIB1 in their vicinity. Since there were many vesicles each with several Rab GTPases attached, several of them moved to the same CRY2 resulting in their clumping together.

This aggregation of vesicles causes a disruption in the cell because the vesicles are prevented from performing their regular functions. "This process", according to first author Mai Khanh Nguyen, "would be like pushing a pause button on the cell." When the light is turned off, the CIB1 and CRY2 are no longer attracted to each other and the vesicles go back to working normally within the cell.

The team is already looking ahead at ways to refine their process. Mai said that "in the future, we plan to combine our tool with genome editing, which we will use to specifically insert sequence encoding CIB1 into the genome, enabling us to optogenetically control the intracellular membrane using endogenous proteins. Nguyen plans on applying IM-LARIAT technology to a living brain, where she would be able to control synaptic vesicle transmission and communication between neurons. She says, "This could be a step towards learning more about many diseases including neurodegenerative disease where the neurons aren't able to communicate with each other." Figuring out how neurons communicate may also be a way to understand how memories form and are stored. This work could lead to a better idea of how diseases like Parkinson's or Alzheimer's function and how to mitigate their effects."
-end-


Institute for Basic Science

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...