Nav: Home

Hidden genetic mutations in stem cells could undermine therapeutic benefit

April 14, 2016

PORTLAND, Ore. - For the first time, scientists have confirmed the long-standing hypothesis that as people age, they accumulate gene mutations in their mitochondria -- cells' energy source.

A team led by Shoukhrat Mitalipov, Ph.D., director of the Center for Embryonic Cell and Gene Therapy at Oregon Health & Science University, has discovered that induced pluripotent stem, or iPS, cells, a type of stem cell derived from patients' skin or blood cells contain faulty mitochondrial DNA. The study was published today in the journal Cell Stem Cell.

"Pathogenic mutations in our mitochondrial DNA have long been thought to be a driving force in aging and age-onset diseases, though clear evidence was missing. Now with that evidence at hand, we know that we must screen stem cells for mutations or collect them at younger age to ensure their mitochondrial genes are healthy," said Mitalipov. "This foundational knowledge of how cells are damaged in the natural process of aging may help to illuminate the role of mutated mitochondria in degenerative disease."

Mitochondrial genes reside outside of the nucleus and have been known to be prone to damage. Mutations in mitochondrial DNA, which arise randomly within individual cells as we age, can limit cells' ability to create energy, produce signals and function properly.

Potential therapies using stem cells hold tremendous promise for treating human disease. However, defects in the mitochondria could undermine the iPS cells' ability to repair damaged tissue or organs. To avoid impairing IPS cells' therapeutic value, Mitalipov and colleagues recommend screening the cells for mitochondrial DNA mutations.

"If you want to use iPS cells in a human, you must check for mutations in the mitochondrial genome," said Taosheng Huang, M.D., Ph.D., a medical geneticist and director of the Mitochondrial Disorders Program at Cincinnati Children's Hospital Medical Center. "Every single cell can be different. Two cells next to each other could have different mutations or different percentages of mutations."

"This collaborative multi-disciplinary effort identifies 'mitochondrial genome integrity' as a vital readout in assessing the proficiency of patient-derived regenerative products destined for clinical applications", adds study co-author Andre Terzic, M.D., Ph.D., Director, Mayo Clinic Center for Regenerative Medicine.

Every individual has trillions of cells and thousands of copies of mitochondria in each cell. As cells age, thousands of different mutations in each mitochondrial genome are possible. Because each cell has its own unique mutation, when researchers examine a pinch of skin or drop of blood containing millions of cells, most mitochondrial mutations are hidden. The mutation would only be visible if every cell has the same mutation.

However, these mutations become detectable in iPS cells. In the process of making iPS cell lines, researchers expand clones from each individual patient skin or blood cell. As a result, every cell in the iPS cell line will contain the same mitochondrial DNA mutations as that initial adult cell.

In this study, rather than studying one iPS cell line, the researchers derived and sequenced 10 iPS cell clones from each patient tissue sample to get a better understanding of mitochondrial DNA mutation rates.

They took samples of blood and skin from healthy people and people with degenerative diseases, ranging in age from 24 to 72. When they tested the pooled skin or blood cells for mitochondrial DNA mutations, the levels of mutations appeared low.

Then they profiled 20 iPS cell lines per patient - 10 from their blood cells and 10 from their skin cells. When they sequenced the iPS cell lines, they found higher numbers of mitochondrial DNA mutations, particularly in cells from patients older than 60. They analyzed 130 iPS cell lines and discovered 80 percent showed mutations. They also found higher percentages of mitochondria containing mutations within a cell. The higher the load of mutated mitochondrial DNA in a cell, the greater the cell's function is compromised.

The authors recommend producing and screening multiple lines per patient and then choose the least damaged line.

In May 2013, Mitalipov was the first scientist in the world to demonstrate the successful use of somatic cell nuclear transfer, or SCNT, to produce human embryonic stem cells from an individual's skin cell. That breakthrough was one of a six-year chain of discoveries that included his 2007 work demonstrating the nuclear transfer method to create embryonic stem cells from a nonhuman primate. OHSU scientists have also demonstrated that SCNT allows replacement of mutated mitochondrial genes with healthy donor egg mitochondria while retaining the patient cell's nucleus.
-end-
The study, "Age-Related Accumulation of Mitochondrial DNA mutations in Adult-Derived Human iPSCs," was supported by the Fondation Leducq, Oregon Health & Science University institutional funds and Mayo Clinic Center for Regenerative Medicine and the Cincinnati Children's Hospital Research Foundation.

About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon's only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children's Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university's social mission. OHSU's Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer's disease and new treatments for Parkinson's disease, multiple sclerosis and stroke. OHSU's Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.

Oregon Health & Science University

Related Mitochondria Articles:

Mitochondria-targeted antioxidant SkQ1 helps to treat diabetic wounds
Members of the Faculty of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University, have tested on a mouse model a mitochondria-targeted antioxidant, helping to treat diabetic wounds.
Mitochondria targeting anti-tumor compound
Researchers from Kumamoto University in Japan have found that the compound folic acid-conjugated methyl-BETA-cyclodextrin (FA-M-BETA-CyD) has significant antitumor effects on folate receptor-ALPHA-expressing (FR-ALPHA (+)) cancer cells.
Closing the gate to mitochondria
A team of researchers develops a new method that enables the identification of proteins imported into mitochondria.
Elucidated connection between renal failure and 'bad' mitochondria described
Biologists from the A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University suggested the approach to prevent kidney injury after ischemia.
How exercise -- interval training in particular -- helps your mitochondria stave off old age
Researchers have long suspected that the benefits of exercise extend down to the cellular level, but know relatively little about which exercises help cells rebuild key organelles that deteriorate with aging.
Cell disposal faults could contribute to Parkinson's, study finds
A fault with the natural waste disposal system that helps to keep our brain cell 'batteries' healthy may contribute to neurodegenerative disease, a new study has found.
Sex cells evolved to pass on quality mitochondria
Mammals immortalize their genes through eggs and sperm to ensure future generations inherit good quality mitochondria to power the body's cells, according to new UCL research.
Newly identified pathway in mitochondria fuels tumor progression across cancer types
Scientists at The Wistar Institute have identified a novel protein pathway across several types of cancer that controls how tumor cells acquire the energy necessary for movement, invasion and metastasis.
Collapse of mitochondria-associated membrane in ALS
Mitochondria-associated membrane (MAM) is a contacting site of endoplasmic reticulum and mitochondria, and plays a key role in cellular homeostasis.
New research on the muscles of elite athletes: When quality is better than quantity
A Danish-Swedish research team working on a project led by University of Southern Denmark has discovered that muscle endurance is not only determined by the number of mitochondria, but also their structure.

Related Mitochondria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...