Nav: Home

The secret language of microbes

April 14, 2016

Social microbes often interact with each other preferentially, favoring those that share certain genes in common. However, the basis for this behavior, known as "kind discrimination," is often unclear. A new study reveals a so-called "green beard" system used by a fungus to decide whether or not it should approach a new individual in the neighborhood and fuse with it.

The new study, performed at the University of California (Berkeley) and publishing in the Open Access journal PLOS Biology on 14th April, shows that the filamentous fungus Neurospora crassa uses a set of highly divergent genes to discriminate "self" from "non-self" cells over a distance and to actively seek out those favored cells (those of the same "kind").

This mechanism of discrimination fits a hypothesis called the "green beard effect," a name coined by Richard Dawkins to describe a model for the evolution of kind discrimination. According to this system, organisms must acquire three things - an arbitrary peculiarity (the "green beard"), the ability to detect the green beard on others, and the tendency to treat such green-bearded individuals preferentially.

When genetically identical asexual spores of Neurospora crassa germinate (termed germlings), they undergo chemotropic interactions and eventual cell fusion. "These genetically identical cells undergo a dialog, alternately 'listening' and 'speaking', which is essential for chemotropic interactions," says lead author Professor N. Louise Glass. In this study, the researchers examined how genetically different germlings communicated, discovering to their surprise that N. crassa populations fall into discrete communication groups.

"It seems like all strains speak the same basic fungal language, but due to different dialects, some strains cannot understand each other, and therefore are unable to establish communication necessary for cell fusion," says Dr Jens Heller, first author of the study.

Germlings from the same communication group are chemically attracted to each other, but germlings from different communication groups grew past each other to find a germling of their own communication type. The authors subsequently identified a specific set of highly variable genes (called "determinant of communication" or doc genes) within N. crassa populations that mediate the communication group affiliation.

By analyzing communication frequency of strains lacking the doc genes or where versions of the doc genes associated with a different communication group were "swapped", the authors show that genetic differences at the doc genes are necessary and sufficient to determine "self" identity. While genetically different strains with identical doc genes show up to 95% communication frequency, strains that are otherwise genetically identical but differ only in their version of the doc genes communicate with less than 10% frequency. "It was fascinating and surprising for us to see how well this kind discrimination system actually works," says Dr. Jens Heller. These data indicate that the doc genes function as "green beard" genes, involved in mediating long distance kind recognition by actively searching for one's own type, which results in cooperation between non-genealogical relatives.

Fusion between germlings brings fitness advantages to N. crassa, such as more rapid colony establishment. Dr Heller says, "Since we know that programmed cell death can result from fusion of incompatible partners in N. crassa, choosing the right partner at a distance can be important". Prof. Glass, principal investigator of the study, summarizes, "Our findings reveal a heretofore under-appreciated complexity in fungal communication. We have only scratched the surface on communication and interactions of these enigmatic organisms."
In your coverage please use this URL to provide access to the freely available article in PLOS Biology:

Contact: Louise Glass (

Citation: Heller J, Zhao J, Rosenfield G, Kowbel DJ, Gladieux P, Glass NL (2016) Characterization of Greenbeard Genes Involved in Long-Distance Kind Discrimination in a Microbial Eukaryote. PLoS Biol 14(4): e1002431. doi:10.1371/journal.pbio.1002431

Funding: This work was funded by a National Institute of General Medical Sciences grant (R01 GM060468) and a National Science Foundation grant (MCB 1412411) to NLG. JH was supported by a research fellowship from the Deutsche Forschungsgemeinschaft (HE 7254/1-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

About Biology

PLOS Biology is an open-access, peer-reviewed journal published by PLOS, featuring research articles of exceptional significance, originality, and relevance in all areas of biology. For more information visit, or follow @PLOSBiology on Twitter.

Media and Copyright Information

For information about PLOS Biology relevant to journalists, bloggers and press officers, including details of our press release process and embargo policy, visit

PLOS Journals publish under a Creative Commons Attribution License, which permits free reuse of all materials published with the article, so long as the work is cited.

About the Public Library of Science

The Public Library of Science (PLOS) PLOS is a nonprofit publisher and advocacy organization founded to accelerate progress in science and medicine by leading a transformation in research communication. For more information, visit


This press release refers to upcoming articles in PLOS Biology. The releases have been provided by the article authors and/or journal staff. Any opinions expressed in these are the personal views of the contributors, and do not necessarily represent the views or policies of PLOS. PLOS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.


Related Fungus Articles:

Researchers look to fungus to shed light on cancer
A team of Florida State University researchers from the Department of Chemistry and Biochemistry found that a natural product from the fungus Fusicoccum amygdali stabilizes a family of proteins in the cell that mediate important signaling pathways involved in the pathology of cancer and neurological diseases.
The invisibility cloak of a fungus
The human immune system can easily recognize fungi because their cells are surrounded by a solid cell wall of chitin and other complex sugars.
Taming the wild cheese fungus
The flavors of fermented foods are heavily shaped by the fungi that grow on them, but the evolutionary origins of those fungi aren't well understood.
Candida auris is a new drug-resistant fungus emerging globally and in the US early detection is key to controlling spread of deadly drug-resistant fungus
Early identification of Candida auris, a potentially deadly fungus that causes bloodstream and intra-abdominal infections, is the key to controlling its spread.
Genetic blueprint for extraordinary wood-munching fungus
The first time someone took note of Coniochaeta pulveracea was more than two hundred years ago, when the South African-born mycologist Dr Christiaan Hendrik Persoon mentioned it in his 1797 book on the classification of fungi.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
North American checklist identifies the fungus among us
Some fungi are smelly and coated in mucus. Others have gills that glow in the dark.
Tropical frogs found to coexist with deadly fungus
In 2004, the frogs of El Copé, Panama, began dying by the thousands.
Deadly amphibian fungus has its origins in East Asia
The fungus kills frogs, toads and salamanders, and now we know where it emerged.
How wheat can root out the take-all fungus
In the soils of the world's cereal fields, a family tussle between related species of fungi is underway for control of the crops' roots, with food security on the line.
More Fungus News and Fungus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at