Nav: Home

What viruses do to neuronal stem cells -- effects of congenital transmission

April 14, 2016

Congenital transmission (from mother to unborn child) of viruses can cause abnormal brain development in the fetus. Examples of viruses that can pass through the placenta and into the fetal brain include cytomegalovirus, rubella, and zika virus. A study published on April 14th in PLOS Pathogens examines the effects of human cytomegalovirus (HCMV) infection on neuronal stem cells and reports that the virus delays or prevents proper differentiation of the stem cells into mature brain cells by activating a key signaling pathway.

About 1 % of newborns in the US are congenitally infected with HCMV. The majority of them show no symptoms, but about 20% have neurological problems that are obvious either at birth or develop soon thereafter. The most severe cases show brain developmental abnormalities such as microcephaly.

To study how viral infection affects brain development, Stéphane Chavanas, from the Université de Toulouse and INSERM UMR1043, in France, and colleagues developed a new model of infection based on human neural stem cells (NSCs) that normally produce neurons (nerve cells) at a high frequency. They found that HCMV infection substantially reduced the rate of neurons generated by the NSCs.

To get at possible mechanisms, the researchers studied the outcomes of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARg), a transcription factor critical in the developing brain. HCMV infection dramatically increased PPARg levels and activity. Consistent with these findings, levels of 9-hydroxyoctadecadienoic acid (9-HODE), a known PPARg activator, were significantly increased in infected NSCs compared with uninfected ones.

Exposure of uninfected NSCs to 9-HODE recapitulated the effect of infection on PPARg activity. Consistent with this, both pharmacological activation of PPARg in uninfected NSCs or treatment of uninfected NSCs with 9-HODE was sufficient to impair neuron production. Moreover, treatment of HCMV infected NSCs with a drug that inhibits PPARg restored a normal rate of neuron production.

To assess the pathophysiological relevance of the experiments in NSCs, the researchers investigated the expression of PPARg in 20 brain samples from aborted fetuses with congenital HCMV infection and 4 samples from uninfected control fetuses. PPARg, they found, was present in the nuclei of cells (where it is active) in brain regions that are normally characterized by active neuron production in infected brain samples, but not in samples from uninfected fetuses.

"NSCs", the researchers state, "turned out to be an invaluable tool for modeling functional correlates of HCMV infection, and this cell platform may probably be extended to other viral pathologies of the central nervous system", such as congenital infection by zika virus. They conclude that their findings "reveal a key role for PPARg in neurogenesis and in the pathophysiology of HCMV congenital infection" and "pave the way to the identification of PPARg gene targets in the infected brain".
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://dx.plos.org/10.1371/journal.ppat.1005547

Please contact plospathogens@plos.org if you would like more information.

Funding: This study was financially supported by the Institut de la Santé et de la Recherche Médicale (INSERM) (inserm.fr), Centre National de la Recherche Scientifique (CNRS) (cnrs.fr), Université Toulouse Paul Sabatier (UPS) (univ-tlse3.fr), Association Française contre les Myopathies (AFM-Téléthon) (afm-telethon.fr), Assistance Publique-Hôpitaux de Paris (AP-HP) (aphp.fr), Université Paris Descartes (UPD) (parisdescartes.fr) and Chinese Academy of Sciences (CAS) (english.cas.cn). MR was financially supported by UPS. XL was financially supported by CNRS and CAS. YS was financially supported by AP-HP and UPD. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Citation: Rolland M, Li X, Sellier Y, Martin H, Perez-Berezo T, Rauwel B, et al. (2016) PPARγ Is Activated during Congenital Cytomegalovirus Infection and Inhibits Neuronogenesis from Human Neural Stem Cells. PLoS Pathog 12(4): e1005547. doi:10.1371/journal.ppat.1005547

PLOS

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...