Nav: Home

Chemical tracers reveal oxygen-dependent switch in cellular pathway to fat

April 14, 2016

Using tracer compounds, scientists have been able to track the cellular production of NADPH, a key coenzyme for making fat, through a pathway that has never been measured directly before.

By tracking this pathway, known as malic enzyme metabolism, which is one of a few recognized routes to make NADPH, researchers from Rabinowitz lab discovered a novel switch in the way fat cells make NADPH depending on the presence of oxygen. The findings were published in Nature Chemical Biology.

"No one had ever shown an environmental dependent switch in any NADPH production pathway," said Joshua Rabinowitz, Professor of Chemistry and the Lewis-Sigler Institute for Integrative Genomics at Princeton and principal investigator of the work. "No one had the tools to look," he said.

NADPH is critical to not only fat synthesis, but also protein and DNA synthesis, and antioxidant defense, implicating it in many diseases such as cancer and diabetes. By understanding and monitoring the pathways through which NADPH is made, scientists can work towards influencing these processes using therapeutic compounds.

The Rabinowitz lab first applied their tracer method in 2014 to study the most well known NADPH production pathway, the oxidative pentose phosphate pathway (oxPPP). The method relied on compounds labeled with deuterium atoms, hydrogen's heavier cousin, which can be deployed in the cell and measured by a technique called mass spectrometry.

In this work, the researchers extended their method to probe the lesser-known malic enzyme pathway by developing two new, orthogonal tracer compounds specific to this pathway. One tracer, a deuterated succinate compound, enters the cycle more directly but is somewhat challenging for the cell to uptake, while the other, a deuterated glucose molecule, is taken up by the cell readily but takes an extra step to enter the pathway.

The research team investigated the malic enzyme pathway under various concentrations of oxygen. Low oxygen environments, which are found in fat cells in obesity, are of particular clinical interest. They found that in a low oxygen environment, the oxidative pentose phosphate pathway produced more NADPH than the malic enzyme pathway, but in a higher oxygen environment, the pathway contributions completely flipped.

"It's like the cells are quite clever. They choose the pathway depending on what they want to make, and what nutrients they can access," said Ling Liu, a graduate student in the Rabinowitz lab and lead author on the work.

One advantage of this method is that it tracks NADPH made specifically in the cytosolic compartment of the cell, whereas the previous leading technique, which relied on tracer compounds with carbon-13 atoms, is unable to differentiate between malic enzyme activity in the cytosol and mitochondria.

NADPH involvement in essential cellular processes has a direct impact on diseases such as diabetes, obesity and cancer. "All of these central biomedical questions depend on an understanding of NADPH pathways, and if you can't quantify how a metabolite is made and used, you can't understand what's going on," Rabinowitz said. "Ultimately, we're trying to understand the fundamental chemistry that's leading to these important biological outcomes," he said.
-end-
Read the full article here:

Liu, L.; Shah, S.; Fan, J.; Park, J. O.; Wellen, K. E.; Rabinowitz, J. D. "Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage." Nat. Chem. Bio. Published online March 21, 2016.

This work was supported by the US National Institutes of Health grants R01CA163591, R01AI097382 and P30DK019525 (to the University of Pennsylvania Diabetes Research Center).

Princeton University

Related Fat Cells Articles:

Why our brain cells may prevent us burning fat when we're dieting
A study carried out in mice may help explain why dieting can be an inefficient way to lose weight: key brain cells act as a trigger to prevent us burning calories when food is scarce.
Fat cells step in to help liver during fasting
How do mammals keep two biologically crucial metabolites in balance during times when they are feeding, sleeping, and fasting?
Making metabolically active brown fat from white fat-derived stem cells
Researchers have demonstrated the potential to engineer brown adipose tissue, which has therapeutic promise to treat metabolic diseases such as obesity and type 2 diabetes, from white adipose-derived stem cells (ASCs).
Stem cells collected from fat may have use in anti-aging treatments
Adult stem cells collected directly from human fat are more stable than other cells -- such as fibroblasts from the skin -- and have the potential for use in anti-aging treatments, according to researchers from the Perelman School of Medicine at the University of Pennsylvania.
Giving the messages from fat cells a positive spin to prevent diabetes
A research team led by Children's National finds that losing weight through surgical approaches appears to reset chemical messages that fat cells send, substantially reducing people's risk of developing type 2 diabetes.
As cells age, the fat content within them shifts
As cells age and stop dividing, their fat content changes, along with the way they produce and break down fat and other molecules classified as lipids.
Tumor cells are dependent on fat to start metastasis
A study headed by Salvador Aznar Benitah, ICREA researcher at the Institute for Research in Biomedicine (IRB Barcelona), and published today in Nature identifies metastasis-initiating cells through a specific marker, namely the protein CD36.
Biologist awarded diabetes research prize for studies of fat cells
Columbia University has awarded the 2016 Naomi Berrie Award for Outstanding Achievement in Diabetes Research to Peter Arner, M.D., Ph.D., a Distinguished Professor in the Department of Medicine at the Karolinska Institute, whose studies on the turnover of fat tissue in the human body has revealed processes that contribute to obesity and diabetes.
When fat cells change their color
A team with the Freiburg researchers Prof. Dr. Roland Schuele and Dr.
Hormone that controls maturation of fat cells discovered at Stanford
Mature fat cells produce a hormone that regulates the differentiation of nearby stem cells in response to glucocorticoid hormones and high-fat diets, Stanford researchers have found.

Related Fat Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...