Nav: Home

Lower-carb diet slows growth of aggressive brain tumor in mouse models

April 14, 2016

GAINESVILLE, Fla. -- University of Florida Health researchers have slowed a notoriously aggressive type of brain tumor in mouse models by using a low-carbohydrate diet.

A high-fat, low-carbohydrate diet that included a coconut oil derivative helped reduce the growth of glioblastoma tumor cells and extended lifespan in mouse models by 50 percent, researchers found. The results were published recently in the journal Clinical Cancer Research.

Glioblastoma, the most common brain tumor in adults, has no effective long-term treatment and on average, patients live for 12 to 15 months after diagnosis, according to the National Cancer Institute.

The findings are a new twist on an old idea: The so-called ketogenic diet has been used for nearly 90 years to help reduce epileptic seizures. Now, a high-fat, low-carbohydrate version of the ketogenic diet has been shown to slow glioblastoma tumors by cutting back on the energy supply they need to thrive, said Brent Reynolds, Ph.D., a professor in the Lillian S. Wells Department of Neurosurgery. A glioblastoma tumor requires large amounts of energy as it grows, and the dietary intervention works by drastically limiting the tumor's supply of glucose, Reynolds said.

"While this is an effective treatment in our preclinical animal models, it is not a cure. However, our results are promising enough that the next step is to test this in humans," Reynolds said.

The modified diet tested by Reynolds' group included a coconut oil derivative known as a medium-chain triglyceride, which plays a crucial role because it replaces some carbohydrates as an energy source.

Reynolds said the modified high-fat, low-carbohydrate diet also has another distinct advantage: Cancer patients could potentially find it more palatable because they can eat more carbohydrates and protein than they could on a classic ketogenic diet.

"When you're sick, you need as many comforts in your life as you can get and food is a huge comfort. That's the idea: Could we develop a beneficial diet but make it much easier for patients?" Reynolds said.

Using human-derived glioblastoma cells in a mouse models, researchers found that the modified high-fat, low-carbohydrate diet increased life expectancy by 50 percent while also reducing tumor progression by a similar amount. In addition to diminishing the tumor's energy supply, the diet slows the growth of glioblastoma cells by altering a cellular-signaling pathway that commonly occurs in cancers, according to the researchers. The modified diet provided just 10 percent of its calories from carbohydrates, compared with 55 percent of calories from carbohydrates in a control group.

While both the ketogenic and modified high-fat, low-carbohydrate diets showed similar effectiveness against tumors in the mouse models, Reynolds said the latter is more nutritionally complete and potentially more appealing to cancer patients because it offers more food choices.

Although researchers don't yet know exactly why it was effective, Reynolds said preliminary data show that the modified diet also appears to make glioblastoma tumors more sensitive to treatment with radiation and chemotherapy. He sees the diet as a supplemental therapy that could complement chemotherapy and radiation.

While more research is needed, the diet could also be a potentially effective secondary treatment for other cancers, such as those affecting the breast, lung and pancreas, he said.

"This simple dietary approach may be able to reduce tumor progression and enhance standard of care treatments in cancers that are highly metabolically active," Reynolds said.

Next, Reynolds wants to start testing the modified high-fat, low-carbohydrate diet in a clinical trial. It typically takes many years to initiate such trials because of the stringent safety testing that must be done before testing in humans begins, but Reynolds said it may be possible to move faster as the therapy only involves modifying a patient's dietary intake and supplementing with a medium-chain triglyceride oil, both of which have no known side effects.
-end-
Funding for the research was provided by the Evelyn F. and William L. McKnight Brain Institute of the University of Florida, UF's Lillian S. Wells Department of Neurosurgery, the Florida Center for Brain Tumor Research, the National Brain Tumor Society, the National Institutes of Health and the American Cancer Society.

University of Florida

Related Glioblastoma Articles:

New methodology developed at UPV to monitor patients with glioblastoma
The UPV methodology helps medical doctors know the patients' situation with greater precision; it allows them to obtain several vascular biomarkers directly linked to their survival.
Exploring drug repurposing to treat glioblastoma
MALT1 blockers have long been in clinical use for the treatment of blood cancers.
Non-coding DNA located outside chromosomes may help drive glioblastoma
According to a new Cell study, extra DNA scooped up and copied alongside cancer-causing genes helps keep tumors going -- elements that could represent new drug targets for brain tumors and other cancers notoriously difficult to treat.
Potential drug targets for glioblastoma identified
Researchers at Karolinska Institutet in Sweden have identified 10 tumour-specific potential drug targets for the brain tumour glioblastoma.
Spanish researchers find a new promising therapeutic target for glioblastoma
Glioblastoma is the most frequent and aggressive brain cancer due to its ability to escape the immune system.
Texas A&M CVM study finds new pathway for potential glioblastoma treatment
A team led by Texas A&M University's College of Veterinary Medicine & Biomedical Sciences' (CVM) researcher Dr.
New research published in cancer discovery identifies new drug target for glioblastoma
A new international study co-led by Cleveland Clinic has identified a new drug target for treating glioblastoma.
Interregional differences in somatic genetic landscape diversify prognosis in glioblastoma
Interregional differences in somatic genetic landscape diversify prognosis in glioblastoma.
Two-pronged gene therapy for glioblastoma proves safe in phase 1 trial
A phase 1 clinical trial has demonstrated that a two-step gene therapy treatment was safe and effective in 31 patients with recurrent glioblastoma -- a stubborn form of brain cancer -- potentially overcoming a major hurdle that has hindered the use of systemically administered interleukin 12 (IL-12)-based regimens.
Single-cell sequencing reveals glioblastoma's shape-shifting nature
Glioblastoma, a cancer that arises in the brain's supporting glial cells, is one of the worst diagnoses a child can receive.
More Glioblastoma News and Glioblastoma Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab