Nav: Home

Scientists crack secrets of the monarch butterfly's internal compass

April 14, 2016

Each fall, monarch butterflies across Canada and the United States turn their orange, black and white-mottled wings toward the Rio Grande and migrate over 2,000 miles to the relative warmth of central Mexico.

This journey, repeated instinctively by generations of monarchs, continues even as monarch numbers have plummeted due to loss of their sole larval food source -- milkweed. But amid this sad news, a research team believes they have cracked the secret of the internal, genetically encoded compass that the monarchs use to determine the direction -- southwest -- they should fly each fall.

"Their compass integrates two pieces of information -- the time of day and the sun's position on the horizon -- to find the southerly direction," said Eli Shlizerman, a University of Washington assistant professor.

While the nature of the monarch butterfly's ability to integrate the time of day and the sun's location in the sky are known from previous research, scientists have never understood how the monarch's brain receives and processes this information. Shlizerman, who has joint appointments in the Department of Applied Mathematics and the Department of Electrical Engineering, partnered with colleagues at the University of Michigan and the University of Massachusetts to model how the monarch's compass is organized within its brain.

"We wanted to understand how the monarch is processing these different types of information to yield this constant behavior -- flying southwest each fall," said Shlizerman, who is lead author on the team's recent paper in the journal Cell Reports.

Monarchs use their large, complex eyes to monitor the sun's position in the sky. But the sun's position is not sufficient to determine direction. Each butterfly must also combine that information with the time of day to know where to go. Fortunately, like most animals including humans, monarchs possess an internal clock based on the rhythmic expression of key genes. This clock maintains a daily pattern of physiology and behavior. In the monarch butterfly, the clock is centered in the antennae, and its information travels via neurons to the brain.

Biologists have previously studied the rhythmic patterns in monarch antennae that control the internal clock, as well as how their compound eyes decipher the sun's position in the sky. Shlizerman's collaborators, including Steven Reppert at the University of Massachusetts, recorded signals from antennae nerves in monarchs as they transmitted clock information to the brain as well as light information from the eyes.

"We created a model that incorporated this information -- how the antennae and eyes send this information to the brain," said Shlizerman. "Our goal was to model what type of control mechanism would be at work within the brain, and then asked whether our model could guarantee sustained navigation in the southwest direction."

In their model, two neural mechanisms -- one inhibitory and one excitatory -- controlled signals from clock genes in the antennae. Their model had a similar system in place to discern the sun's position based on signals from the eyes. The balance between these control mechanisms would help the monarch brain decipher which direction was southwest.

Based on their model, it also appears that during course corrections monarchs do not simply make the shortest turn to get back on route. Their model includes a unique feature -- a separation point that would control whether the monarch turned right or left to head in the southwest direction.

"The location of this point in the monarch butterfly's visual field changes throughout the day," said Shlizerman. "And our model predicts that the monarch will not cross this point when it makes a course correction to head back southwest."

Based on their simulations, if a monarch gets off course due to a gust of wind or object in its path, it will turn whichever direction won't require it to cross the separation point.

Additional studies would need to confirm whether the researchers' model is consistent with monarch butterfly brain anatomy, physiology and behavior. So far, aspects of their model, such as the separation point, seem consistent with observed behaviors.

"In experiments with monarchs at different times of the day, you do see occasions where their turns in course corrections are unusually long, slow or meandering," said Shlizerman. "These could be cases where they can't do a shorter turn because it would require crossing the separation point."

Their model suggests a simple explanation why monarch butterflies are able to reverse course in the spring and head northeast back to the United States and Canada. The four neural mechanisms that transmit information about the clock and the sun's position would simply need to reverse direction.

"And when that happens, their compass points northeast instead of southwest," said Shlizerman. "It's a simple, robust system to explain how these butterflies -- generation after generation -- make this remarkable migration."
-end-
In addition to Reppert, other co-authors on the paper were James Phillips-Portillo at the University of Massachusetts and Daniel Forger at the University of Michigan. Shlizerman's work was funded by the National Science Foundation and the Washington Research Fund.

Additional information can be found at the project's blog.

For more information, contact Shlizerman at 206-543-6658 or shlizee@uw.edu.

Grant number: DMS-1361145

University of Washington

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...