Nav: Home

Keratin scaffolds could advance regenerative medicine and tissue engineering for humans

April 14, 2020

Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.

The regeneration of tissue at the site of injury or wounds caused by burns or diseases such as diabetes is a challenging task in the field of biomedical science. Regenerative medicine and tissue engineering require complementary key ingredients, such as biologically compatible scaffolds that can be easily adopted by the body system without harm, and suitable cells including various stem cells that effectively replace the damaged tissue without adverse consequences. The scaffold should mimic the structure and biological function of the native extracellular matrix at the side of injury for regeneration of tissues.

The article "Can keratin scaffolds be used for creating three-dimensional cell cultures" has been published in the De Gruyter open access journal Open Medicine. It presents findings on the development of three-dimensional cell cultures derived from fiber keratin scaffolds from rat fur. The study suggests that both the use of appropriate digest enzymes and the fraction in length and diameter of the keratin fibers is significant. The cells demonstrated the ability to grow up and form the 3D colonies on rat F-KAP for several weeks without morphological changes of the cells and with no observed apoptosis.

"We believe that this absence of morphological changes in cells and the lack of apoptosis, in addition to the low immunogenicity and biodegradation of KAP scaffolds, indicates that they are promising candidates for tissue engineering in clinical applications," said Piotr Kosson, PhD.
-end-
The open access paper can be found here: https://doi.org/10.1515/med-2020-0031

De Gruyter

Related Regenerative Medicine Articles:

New research into stem cell mutations could improve regenerative medicine
Research from the University of Sheffield has given new insight into the cause of mutations in pluripotent stem cells and potential ways of stopping these mutations from occurring.
Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.
New prize-winning research highlights potential of immune intervention in improving regenerative medicine
Joana Neves is the 2019 grand prize winner of the Sartorius & Science Prize for Regenerating Medicine & Cell Therapy, for work in mice that offers a promising approach to improve the outcome of regenerative stem cell-based therapies aimed at delaying age-related degenerative diseases.
NUS Medicine researchers can reprogramme cells to original state for regenerative medicine
Scientists from NUS Medicine have found a way to induce totipotency in embryonic cells that have already matured into pluripotency.
A new material for regenerative medicine capable to control cell immune response
Scientists of Tomsk Polytechnic University jointly with the University of Montana (USA) proposed a new promising material for regenerative medicine for recovery of damaged tissues and blood vessels.
Optoceutics: A new technique using light for regenerative medicine
Researchers in Italy at IIT-Istituto Italiano di Tecnologia used visible light together with photo-sensitive and biocompatible materials to facilitate the formation of new blood vessels in vitro.
Major stem cell discovery to boost research into development and regenerative medicine
A new approach has enabled researchers to create Expanded Potential Stem Cells (EPSCs) of both pig and human cells.
Spinning-prism microscope helps gather stem cells for regenerative medicine
Pluripotent stem cells are crucial to regenerative medicine, but better screening methods are needed to isolate safe and effective cells for medical use.
'Cellular dust' provides new hope for regenerative medicine
While stem cells have the most therapeutic potential, the benefits of regenerative medicine may best be mobilised using extracellular vesicles (EVs), also known in the past as 'cellular dust'.
New stem cell found in lung, may offer target for regenerative medicine
Newly identified stem cells in the lung that multiply rapidly after a pulmonary injury may offer an opportunity for innovative future treatments that harness the body's ability to regenerate.
More Regenerative Medicine News and Regenerative Medicine Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.