Transposable elements play an important role in genetic expression and evolution

April 14, 2020

Until recently, little was known about how transposable elements contribute to gene regulation. These are little pieces of DNA that can replicate themselves and spread out in the genome. Although they make up nearly half of the human genome, these were often ignored and commonly thought of as "useless junk," with a minimal role, if any at all, in the activity of a cell. A new study by Adam Diehl, Ningxin Ouyang, and Alan Boyle, University of Michigan Medical School and members of the U-M Center for RNA Biomedicine, shows that transposable elements play an important role in regulating genetic expression with implications to advance the understanding of genetic evolution.

Transposable elements move around the cell, and, unlike previously thought, the authors of this paper found that when they go to different sites, transposable elements sometimes change the way DNA strands interact in 3D space, and therefore the structure of the 3D genome. It appears a third of the 3D contacts in the genome actually originate from transposable elements leading to an outsized contribution by these regions to looping variation and demonstrating their very significant role in genetic expression and evolution.

The main component that determines 3D structure is a protein called CTCF. This study particularly focused on how transposable elements create new CTCF sites that, in turn, hijack existing genomic structure to form new 3D contacts in the genome. The authors show that these often create variable loops that can influence regulatory activity and gene expression in the cell. These findings were observed in human cells and mouse cells and show how transposable elements contribute to intraspecies variation and interspecies divergence, and will guide further research efforts in areas including gene regulation, regulatory evolution, looping divergence, and transposable element biology.

To streamline this work, the authors developed a piece of software, MapGL, to track the physical gain and loss of short genetic sequences across species. For example, a sequence that existed in the most common ancestor may have been lost somewhere or, inversely, could have been absent in the common ancestor but later gained in the human genome. MapGL enables predictions about the evolutionary influences of structural variations between species and makes this type of analysis much more accessible. For this paper, their input was a set of CTCF binding sites which were labeled by MapGL to show that a sequence gain/loss process explains many of the differences in CTCF binding between humans and mice.

With a background in computer science and molecular biology, Alan Boyle explains that he has always been interested in gene regulation. "It's like a complex circuit: perturbing gene regulation through changes to the three-dimensional structure of the genome can have very different and wide-ranging outcomes."

For Adam Diehl, this research continues the great discoveries that started in the late 1800s, when scientists first looked at the shape of chromosomes through microscopes. They observed the shape differences between cells, and noticed that the shape inside the nuclei remained the same between mother and daughter cells. Decades later, transposable elements were discovered at his alma mater, Cornell University: jumping genes could change the phenotypes of corn plants. In the 70s, because the genes between humans and chimpanzees are much too similar to explain the differences between the species, scientific focus shifted on how the genes are being used. For Diehl "It's so exciting to be able to synthesize all this knowledge, and contribute to the next step of the story of species evolution."

This research team will further study the impact of transposable elements on the 3D genome, but this time with a particular interest on a single human population sample rather than across species. The next steps will include experimental follow-up using a new sequencing method capable of identifying transposable element insertions that are variable across human populations. This method was developed in collaboration with Ryan Mills's lab, at the University of Michigan, Medical School. It is expected that the next results will further the understanding of the regulatory role of the transposable elements with possible applications to neurodegenerative diseases.
-end-
Citation

Diehl, A.G., Ouyang, N. & Boyle, A.P. Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes. Nat Commun 11, 1796 (2020). https://doi.org/10.1038/s41467-020-15520-5

About the Authors


Adam Diehl is Research Computer Specialist in the Alan Boyle Lab, Department of Computational Medicine and Biology, University of Michigan

Alan P. Boyle, Ph.D. is Assistant Professor, Department of Computational Medicine and Bioinformatics (DCM&B), Department of Human Genetics, University of Michigan Medical School. Alan Boyle Lab

Ningxin Ouyang is a Doctoral Student, Bioinformatics Candidate in the Alan Boyle Lab

University of Michigan

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.