Merlin tells when to grow and when to stop

April 15, 2001

An international team of scientists lead by Dr. Peter Herrlich at the University of Karlsruhe in Germany has discovered how the tumor suppressor, merlin, functions. Mutations in merlin cause Neurofibromatosis type 2 (NF2), a common inherited disorder that features the predisposition to develop multiple benign tumors of the central nervous system. Published in Genes & Development, this work delineates the pathway by which cells that are mutant in merlin become tumorigenic.

Cell density is one of several growth-limiting parameters. Normal cells proliferate until they occupy the space allotted to them, and stop proliferating once they contact other cells or a dense extracellular environment. Overcoming this contact growth inhibition is an integral aspect of cancer induction. Dr. Herrlich and colleagues have found that merlin is a key component of the mechanism by which a cell responds to contact inhibition.

Although previous studies have identified merlin as a negative regulator of cell growth, this paper is the first documentation of merlin's specific role in the contact inhibition of growth. Under high cell density conditions, the extracellular portion of the cell membrane-spanning protein, CD44, binds to a specific component of the matrix that surrounds adjacent proliferating cells. Dr. Herrlich and colleagues have shown that once this occurs, merlin becomes desphosphorylated, and forms a tight bond with the intracellular portion of CD44. This activated form of merlin effectively blocks further cell proliferation.

The data presented in this paper has significant implications for the understanding of how merlin deficiency contributes to tumorigenesis. NF2 patients display multiple tumors derived from glial cells. This work suggests that because these glial cells lacked the merlin/CD44 growth regulatory switch, they were able to overcome contact growth inhibition. Although contact inhibition is only one form of cell growth regulation, the insight that Dr. Herrlich and colleagues have provided into the mechanism of contact growth inhibition will undoubtedly improve our understanding of cancer development.

Cold Spring Harbor Laboratory

Related Tumor Suppressor Articles from Brightsurf:

New results on the function of the tumor suppressor HERC protein
The RAF protein could be a therapeutical target to treat the tumor growth in regulated pathways by the p38 protein, according to a new study published in the journal Scientific Reports by a team of experts of the Faculty of Medicine and Health Sciences of the University of Barcelona and the Bellvitge Institute for Biomedical Research (IDIBELL).

New function for potential tumor suppressor in brain development
New research from the group of Simon Hippenmeyer, professor at the Institute of Science and Technology Austria (IST Austria), has now uncovered a novel, opposite role for Cdkn1c.

Researchers determine how a major tumor suppressor pathway becomes deactivated
The Hippo pathway is an important biological tumor suppressor program that controls cell growth and organ size in humans.

Nanoparticle therapeutic restores function of tumor suppressor in prostate cancer
Leveraging advances in mRNA and nanotechnology, investigators demonstrate that tumor suppressor PTEN can be restored in preclinical models of prostate cancer.

Discovery of a new tumor suppressor previously thought to be an oncogene
A gene that has for decades been considered a tumor promoter, the PLK1 gene, can also perform the exact opposite function: halting the development of cancer.

Unraveling role of tumor suppressor in gene expression & ovarian tumorigenesis
The tumor suppressor protein ARID1A controls global transcription in ovarian epithelial cells, according to new research conducted at The Wistar Institute, which provided mechanistic insight into tumorigenesis mediated by ARID1A loss in ovarian cancer.

Tumor suppressor protein plays key role in suppressing infections
Researchers have found that a previously uncharacterized tumor-suppressor protein plays an important role in the functioning of the immune system.

Tumor suppressor protein targets liver cancer
Salk Institute scientists, together with researchers from Switzerland's University of Basel and University Hospital Basel, discovered a protein called LHPP that acts as a molecular switch to turn off the uncontrolled growth of cells in liver cancer.

Stanford-led study uncovers mutation that supercharges tumor-suppressor
Stanford scientists have found an answer to one of cancer biology's toughest and most important questions: how does the body suppress tumors?

Injecting activator of a powerful tumor suppressor directly into the cancer increases tumor destruction, decreases toxicity
Directly injecting a tumor with an agent that activates a natural, powerful tumor suppressor enhances the drug's capacity to attack the tumor both locally and where it spreads, scientists report in the journal Cancer Research.

Read More: Tumor Suppressor News and Tumor Suppressor Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to