Researchers receive funds to create high-tech wildfire fighting solutions

April 15, 2004

Arlington, Va.-- Frontline fire fighting could soon go high tech. In the not so distant future, analysts using supercomputers may be able to send real-time maps and predictions of a wildfire's next moves to wildfire management teams hundreds of miles away. That crucial information could be passed on to palm pilots and other wireless devices in the hands of frontline firefighters deciding how best to battle the blaze.

With millions of dollars in property and millions of acres In the American West burned by devastating wildfires in recent years, researchers at the University of Colorado at Denver, the University of Kentucky, Texas A&M University, Rochester Institute of Technology, and the National Center for Atmospheric Research (NCAR) in Boulder, Colo. are working together to develop state-of-the-art information tools and apply them to wild land fire.

This team has been awarded $2 million to develop an advanced, computer-generated, dynamic, data-driven system that will predict wildfire behavior and progression. The four-year project, funded by the National Science Foundation(NSF), will use the most recent advances in computer speed and power, highspeed information networks, satellite and sensor monitoring, mathematical theory and meteorology to develop tools to warn firefighters about where a fire may go and sudden changes that might occur, such as wind changes or extreme fire behavior.

"For several years NSF has invested in interdisciplinary research focused on wildfires. This award builds on prior investments, expands the collaborative effort, and supports the NSF goal of applying science in service to society, " said Cliff Jacobs, program director in NSF's division of atmospheric sciences, which funded the grant.

Called the Data Dynamic Simulation for Disaster Management project, its team is headed by UC-Denver mathematician Jan Mandel, who will work with a coupled weather and wildfire computer model developed at NCAR to build a software system that will use data from the fire scene to determine wildfire spread scenarios and probabilities.

The grant will allow the team to create a system where multiple sensors placed around a wildfire will continuously send input such as temperature, wind direction and speed and the moisture in grass and sticks to a high-end research computer known as a supercomputer.

The supercomputer will use the mathematically based wildfire model to continuously send maps and forecasted fire locations to the front lines in real time, allowing a fire manager to see minute-by-minute predictions or anticipate where fire growth will occur along the fireline. The system may also allow fire managers to plan the most effective and efficient actions, for example by foreseeing situations where weather, the terrain, fuels and winds created by the fire would combine to create a fire that would grow rapidly unless more resources were used to stop it early on. The system might also be used to identify situations where wildfires can be allowed to spread harmlessly under controlled conditions for hazardous fuel reduction and natural resource benefits.

The efforts of the team will eventually be put to the test. In four years, they are scheduled to take the technology to a real wildfire.

Said Mandel "In the past, running a model on a computer meant starting a simulation and then waiting for the results. It is time to change the way scientific modeling is done. In a movie, you may see a computer on a starship, and the computer takes into consideration new information as soon as it comes. This is how computers work in the imagination of movie directors, and this is how people expect computers should work. Our project will help make this a reality."

Wild land fires are a devastating force driven by complex phenomena that are not well understood. Scientists at NCAR have a history of coupling numerical regional weather simulations with fire-spread models to advance the understanding of wildfires.

According to NCAR scientist Janice Coen, "There are many things about wildfires that aren't understood scientifically. But there are also a lot of technological challenges to simulating phenomena that change very rapidly, and in quickly transmitting data from remote locations into a model running many possible scenarios on a supercomputer very far away. You have to deliver this information rapidly, reliably and in a meaningful way (with images, not words) through secure means to people who may be far from telephones. Those are the information technology problems this research addresses, and they occur in management of other natural and human-caused disasters as well."
-end-
Program Contact: Clifford Jacobs, 703-292-8521, cjacobs@nsf.gov

Media contacts:

NSF: Cheryl Dybas, 703-292-7734, cdybas@nsf.gov
UCAR: Anatta, 303-497-8604, anatta@ucar.edu
University of Colorado at Denver: Michele Ames, 303-556-2523, michele.ames@udenver.edu

Images: http://www.nsf.gov/od/lpa/newsroom/pr_all_img.cfm?ni=78

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
News Highlights: http://www.nsf.gov/home/news.html
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm

National Science Foundation

Related Wildfires Articles from Brightsurf:

Wildfires can cause dangerous debris flows
Wildfires don't stop being dangerous after the flames go out.

The effects of wildfires and spruce beetle outbreaks on forest temperatures
Results from a study published in the Journal of Biogeography indicate that wildfires may play a role in accelerating climate-driven species changes in mountain forests by compounding regional warming trends.

Without the North American monsoon, reining in wildfires gets harder
New research shows that while winter rains can temper the beginning of the wildfire season, monsoon rains are what shut them down.

Wildfires cause bird songs to change
A new study in The Auk: Ornithological Advances suggests that wildfires change the types of songs sung by birds living in nearby forests.

Recent Australian wildfires made worse by logging
Logging of native forests increases the risk and severity of fire and likely had a profound effect on the recent, catastrophic Australian bushfires, according to new research.

Study synthesizes what climate change means for Northwest wildfires
A synthesis study looks at how climate change will affect the risk of wildfires in Washington, Oregon, Idaho and western Montana.

Climate change increases the risk of wildfires confirms new review
Human-induced climate change promotes the conditions on which wildfires depend, increasing their likelihood -- according to a review of research on global climate change and wildfire risk published today.

Fire blankets can protect buildings from wildfires
Wrapping a building in a fire-protective blanket is a viable way of protecting it against wildfires, finds the first study to scientifically assess this method of defense.

Stanford researchers have developed a gel-like fluid to prevent wildfires
Scientists and engineers worked with state and local agencies to develop and test a long-lasting, environmentally benign fire-retarding material.

UCI team uses machine learning to help tell which wildfires will burn out of control
An interdisciplinary team of scientists at the University of California, Irvine has developed a new technique for predicting the final size of a wildfire from the moment of ignition.

Read More: Wildfires News and Wildfires Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.