Diseased brain cells more involved in ALS-associated motor neuron death

April 15, 2007

NEW YORK - Two papers by Columbia and Harvard researchers report for the first time that astrocytes (the most abundant non-neuronal cells in the central nervous system), which carry a mutated gene known to cause some cases of amyotrophic lateral sclerosis (ALS/Lou Gehrig's disease), induce motor neuron death. This indicates that astrocytes may contribute to ALS by releasing a toxic factor that damages neurons. These findings, posted online by Nature Neuroscience on April 15, suggest that developing an effective therapy for ALS would require overcoming the destructive effects of astrocytes and replacing the damaged motor neurons, possibly by transplanting motor neurons derived from embryonic stem cells.

In ALS, there is a progressive degeneration of motor neurons, leading to paralysis and eventual death. In single cell culture studies at Columbia University Medical Center, Serge Przedborski, M.D., Ph.D., co-director of the Center for Motor Neuron Biology and Disease, and his colleagues found that astrocytes expressing a mutated form of a gene, superoxide dismutase (SOD1), killed only the neurons that degenerate in ALS, not other types of neurons, and that this was due to a soluble toxic factor released by the astrocytes. If this toxic factor can be identified in future studies, this finding may offer novel strategies for ALS therapy.

Astrocyte Cells Not Spectators, But Key Players

"It was previously thought that astrocytes were merely spectators watching their neighboring motor neurons die," said Dr. Przedborski, who is the Page & William Black Professor of Neurology and professor of pathology and cell biology at Columbia's College of Physicians & Surgeons. "With these results, we have learned they are not just spectators, they are major players. The astrocytes and their cellular environment are specifically causing motor neuron death.

"If these cell culture findings are faithfully modeling the situation occurring in ALS, then blocking the toxic factor released by astrocytes as early as possible could become an effective neuroprotective strategy against this disease," Dr. Przedborski added. "Currently, we diagnose ALS at a point when a large number of motor neurons are already gone. As we learn more about astrocytes and the toxic factor or factors they release, we may be able to screen people for elevated levels of these proteins and intervene in a tangible way perhaps even before a person displays any clinical sign of ALS."

Dr. Przedborski's vision is to eventually test for the "biomarkers" of astrocytes and toxic factors in human ALS patients and then neutralize these factors early in the process thereby stalling or eliminating the degeneration of motor neurons and the onset of debilitating ALS symptoms.
Additional Columbia researchers who contributed to this study include: Tetsuya Nagata, M.D., Ph.D., Diane B. Re, Ph.D. and Makiko Nagai, M.D., Ph.D. of the Center for Motor Neuron Biology and Disease; Alcmène Chalazonitis, Ph.D. from the Department of Pathology and Cell Biology; Thomas Jessell, Ph.D., professor of biochemistry and molecular biophysics, Howard Hughes Medical Institute investigator, and director and research adviser for the Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research; and, Hynek Wichterle, Ph.D., assistant professor of pathology, whose seminal work in 2002 showed that mouse stem cells could be manipulated to become motor neurons.

The Columbia's team astrocyte findings were corroborated in another Nature Neuroscience study authored by Kevin Eggan, Ph.D., Thomas Maniatis, Ph.D. and colleagues at Harvard University and the Harvard Stem Cell Institute. Harvard and Columbia researchers discovered their similar research through ongoing collaboration with the Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research in New York.

This work was supported by the National Institute of Neurological Disorders and Stroke, the U.S. Department of Defense, the Muscular Dystrophy Association/Wings-over-Wall Street, the ALS Association, the Parkinson's Disease Foundation, the Bernard and Anne Spitzer Fund, and Project A.L.S.

Columbia University Medical Center provides international leadership in basic, pre-clinical and clinical research, in medical and health sciences education, and in patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, nurses, dentists, and public health professionals at the College of Physicians & Surgeons, the College of Dental Medicine, the School of Nursing, the Mailman School of Public Health, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. www.cumc.columbia.edu

Columbia University Medical Center

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.