Hebrew SeniorLife researchers discover genes linked to osteoporosis, bone breaks

April 15, 2012

BOSTON -- Researchers at The Institute for Aging Research at Hebrew SeniorLife, an affiliate of Harvard Medical School, have co-authored the largest meta-analysis of genome-wide association studies of osteoporosis as part of an international consortium and have identified dozens of genetic variants found to be linked to an increased risk of developing osteoporosis and of suffering broken bones.

The paper, published today in Nature Genetics, identifies 56 genetic variants that have been found to influence Bone Mineral Density (BMD), which is the hallmark of osteoporosis or thinning bones.

Fourteen of the genetic variants were specifically linked to an increased risk of bone fracture, the first time such a large number of genetic variants has been found to be strongly associated with fracture risk.

The issue is important because osteoporosis accounts for about 1.5 million new fractures each year. In addition, half of all those over age 80 who fracture a hip die within a year of the accident and women over age 65 are at greater risk of death after hip fracture than after getting breast cancer.

"This is the largest osteoporosis genetic study ever done," said senior author Douglas P. Kiel, M.D. M.P.H., Director of the Musculoskeletal Research Center and Senior Scientist at the Institute for Aging Research at Hebrew SeniorLife as well as Professor of Medicine at Harvard Medical School.

"The ultimate goal of genetic studies like this is to develop personal, gene-based treatments for osteoporosis as well as to better identify those at high risk for the disease," said Dr. Kiel, the only senior author of the study who is based in the United States. " The findings could lead to new treatments to prevent or treat osteoporosis."

Dr. Kiel and Yi-Hsiang Hsu, also of the Institute for Aging Research and HMS, were among the leaders of the international study that involved hundreds of researchers from all over the world who conducted 17 separate studies on the subject of Bone Mineral Density of the spine and hip. The Consortium infrastructure and some of the genotyping resources were funded by the European Union.

The researchers pooled the data from the 17 studies, which involved 32,961 individuals, then replicated their findings by looking at data from 34 more studies that had involved 50,933 more subjects. The subjects had received bone density scans. They also had genotyping done. The findings from the bone mineral density work were then compared with data culled from 31,016 individuals with a history of fracture and 102,444 control subjects.

Today's study identifies 32 new genetic variants linked to the level of bone mineral density in addition to 24 that had already been so linked. Bone mineral density is the most accurate predictor of fracture risk.

The research adds to a better understanding of the biology of skeletal health and fracture susceptibility. "Our results indicate that hundreds of variants with small effects may contribute to the genetic architecture of BMD and fracture risks," the paper says.

"We also established that, as compared to women carrying the normal range of genetic factors, women with an excess of BMD-decreasing genetic variants had up to a 56 percent higher risk of having osteoporosis and a 60 percent increased risk for all types of fractures," Dr. Kiel said.

Even more interesting, he said, was the discovery of groups of individuals who had fewer than normal genetic factors linked to BMD issues, something that seems to protect them from developing osteoporosis or sustaining fractures.

Dr. Kiel said the Consortium is already planning a study that will look for genetic variants across the genome that are associated with fracture risk, rather than bone density. He noted that fracture risk may be related to other factors in addition to bone density, such as poor balance, which can lead to falls. In fact, half of those without osteoporosis as diagnosed by bone scan still suffer fractures.
-end-
Scientists at the Institute for Aging Research of Hebrew SeniorLife seek to transform the human experience of aging by conducting research that will ensure a life of health, dignity and productivity into advanced age. The Institute carries out rigorous studies that discover the mechanisms of age-related disease and disability; lead to the prevention, treatment and cure of disease; advance the standard of care for older people; and inform public decision-making.

Hebrew SeniorLife, an affiliate of Harvard Medical School, is a non-sectarian, nonprofit organization devoted to innovative research, health care, education and housing that improves the lives of seniors. For more information, visit www.hebrewseniorlife.org.

Hebrew SeniorLife Institute for Aging Research

Related Osteoporosis Articles from Brightsurf:

New opportunities for detecting osteoporosis
Osteoporosis can be detected through low dose computed tomography (LDCT) imaging tests performed for lung cancer screening or other purposes.

Oxytocin can help prevent osteoporosis
In a laboratory experiment with rats, Brazilian researchers succeeded in reversing natural processes associated with aging that lead to loss of bone density and strength.

New strategy against osteoporosis
An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

New review on management of osteoporosis in premenopausal women
An IOF and ECTS Working Group have published an updated review of literature published after 2017 on premenopausal osteoporosis.

Cardiac CT can double as osteoporosis test
Cardiac CT exams performed to assess heart health also provide an effective way to screen for osteoporosis, potentially speeding treatment to the previously undiagnosed, according to a new study.

Osteoporosis treatment may also protect against pneumonia
A recent study published in the Journal of Bone and Mineral Research found that nitrogen-containing bisphosphonates (N-BPs) such as alendronate, which are widely used to treat postmenopausal osteoporosis, are linked with lower risks of pneumonia and of dying from pneumonia.

New pharmaceutical target reverses osteoporosis in mice
Biomedical engineers at Duke University have discovered that an adenosine receptor called A2B can be pharmaceutically activated to reverse bone degradation caused by osteoporosis in mouse models of the disease.

A link between mitochondrial damage and osteoporosis
In healthy people, a tightly controlled process balances out the activity of osteoblasts, which build bone, and osteoclasts, which break it down.

Many stroke patients not screened for osteoporosis, despite known risks
Many stroke survivors have an increased risk of osteoporosis, falls or breaks when compared to healthy people.

Many postmenopausal women do not receive treatment for osteoporosis
The benefits of treating osteoporosis in postmenopausal women outweigh the perceived risks, according to a Clinical Practice Guideline issued today by the Endocrine Society.

Read More: Osteoporosis News and Osteoporosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.