'Pull my finger!' say scientists who solve knuckle-cracking riddle

April 15, 2015

EDMONTON, AB (April 12, 2015) -- "Pull my finger," a phrase embraced by school-aged kids and embarrassing uncles the world over, is now being used to settle a decades-long debate about what happens when you crack your knuckles.

In a new study published April 15 in PLOS ONE, an international team of researchers led by the University of Alberta used MRI video to determine what happens inside finger joints to cause the distinctive popping sounds heard when cracking knuckles. For the first time, they observed that the cause is a cavity forming rapidly inside the joint.

"We call it the 'pull my finger study'--and actually pulled on someone's finger and filmed what happens in the MRI. When you do that, you can actually see very clearly what is happening inside the joints," explained lead author Greg Kawchuk, a professor in the Faculty of Rehabilitation Medicine.

Scientists have debated the cause of joint cracking for decades, dating back to 1947 when U.K. researchers first theorized vapour bubble formation as the cause. That was put in doubt in the 1970s when another team of scientists instead fingered collapsing bubbles as the cause.

The idea for the project was born when Nanaimo chiropractor Jerome Fryer approached Kawchuk about a new knuckle-cracking theory. They decided to skip the theories and, with U of A colleagues Jacob Jaremko, Hongbo Zeng, Richard Thompson and Australian Lindsay Rowe, decided to actually look inside the joint.

But to find an answer, the team needed someone capable of cracking knuckles on demand--a job that fell to Fryer himself. Kawchuk said most people have the ability to crack their knuckles, but unlike most, Fryer can do it in every finger, and after the standard recuperation time, he can do it again.

"Fryer is so gifted at it, it was like having the Wayne Gretzky of knuckle cracking on our team," says Kawchuk.

Fryer's fingers were inserted one at a time into a tube connected to a cable that was slowly pulled until the knuckle joint cracked. MRI video captured each crack in real time--occurring in less than 310 milliseconds.

In every instance, the cracking and joint separation was associated with the rapid creation of a gas-filled cavity within the synovial fluid, a super-slippery substance that lubricates the joints.

"It's a little bit like forming a vacuum," Kawchuk said. "As the joint surfaces suddenly separate, there is no more fluid available to fill the increasing joint volume, so a cavity is created and that event is what's associated with the sound."

Cracking knuckles a sign of healthy joints?

More than settling a scientific curiosity, the findings pave the way for new research into the therapeutic benefit or harm of joint cracking, explained Kawchuk, a PhD in bioengineering and expert in spinal structure and function.

Scientists have calculated that the amount of force at work when you crack your knuckles has enough energy to cause damage to hard surfaces, yet research also shows that habitual knuckle cracking does not appear to cause long-term harm. Those conflicting results are something Kawchuk and his team plan to investigate next.

"The ability to crack your knuckles could be related to joint health," said Kawchuk, who believes this work could have implications for other joints in the body, including the spine, and help explain why joints become arthritic or injured.

In addition to solving the riddle of finger cracking, the team's data revealed the presence of a white flash that appears just before cracking. No one has observed it before, says Kawchuk, an occurrence he believes is water suddenly being drawn together just before the joint cracks. Kawchuk said he'd like to use even more advanced MRI technology to understand what happens in the joint after the pop, and what it all means for health.

"It may be that we can use this new discovery to see when joint problems begin long before symptoms start, which would give patients and clinicians the possibility of addressing joint problems before they begin."
-end-
NOTE TO EDITORS: An MRI video of the knuckle cracking procedure is available on YouTube. Still images can be downloaded. Please credit the University of Alberta. Greg Kawchuk is currently on sabbatical and based in Hong Kong.

For more information:

Greg Kawchuk
Professor
Faculty of Rehabilitation Medicine
University of Alberta
+852 9461 2671 (Hong Kong)
greg.kawchuk@ualberta.ca

Bryan Alary
Director, Marketing and Communications
Faculty of Rehabilitation Medicine
University of Alberta
1-780-492-9403 (Mountain Daylight Time)
bryan.alary@ualberta.ca

University of Alberta

Related MRI Articles from Brightsurf:

Does MRI have an environmental impact?
Researchers from Tokyo Metropolitan University have surveyed the amount of gadolinium found in river water in Tokyo.

MRI predict intelligence levels in children?
A group of researchers from the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE) took 4th place in the international MRI-based adolescent intelligence prediction competition.

7T MRI offers new insights into multiple sclerosis
Investigators from Brigham and Women's Hospital have completed a new study using 7 Tesla (7T) MRI -- a far more powerful imaging technology -- to further examine LME in MS patients

Magnetic eyelashes: A new source of MRI artifacts
American Journal of Roentgenology researchers used a phantom to show that magnetic eyelashes worn during MRI can cause substantial artifact and that detachment of the eyelashes from the phantom can occur.

High-strength MRI tracks MS progression
The development of scars, or lesions, in the brain's cortical gray matter is a powerful predictor of neurological disability for people with multiple sclerosis (MS), according to new study.

Non-contrast MRI is effective in monitoring MS patients
Brain MRI without contrast agent is just as effective as the contrast-enhanced approach for monitoring disease progression in patients with multiple sclerosis (MS), according to a new study.

Researchers use MRI to predict Alzheimer's disease
MRI brain scans perform better than common clinical tests at predicting which people will go on to develop Alzheimer's disease, according to a new study.

Monitoring electromagnetic signals in the brain with MRI
MIT engineers have devised a new technique to detect either electrical activity or optical signals in the brain, using a minimally invasive technique based on magnetic resonance imaging (MRI).

MRI 'glove' provides new look at hand anatomy
A new kind of MRI component in the shape of a glove delivers the first clear images of bones, tendons and ligaments moving together.

Why we need erasable MRI scans
Gas-filled protein structures could one day be used as 'erasable' contrast agents for MRI scans.

Read More: MRI News and MRI Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.