Nav: Home

Preliminary study: Antibody therapy reduces cancer stem cells in multiple myeloma

April 15, 2016

An experimental antibody treatment decreased by half the number of cancer stem cells that drive the growth of tumors in nearly all patients with multiple myeloma, a cancer of the bone marrow and bone tissue, according to results of a preliminary clinical trial led by Johns Hopkins Kimmel Cancer Center scientists.

The antibody, called Medi-551, was tested in 15 newly diagnosed patients with multiple myeloma who also received a monthly regimen of lenalidomide and dexamethasone -- already approved chemotherapy drugs that are often prescribed to treat multiple myeloma. The scientists are expected to present their findings April 19 at the American Association for Cancer Research (AACR) Annual Meeting 2016 in New Orleans (abstract CT102).

The researchers, led by myeloma experts William Matsui, M.D., and Carol Ann Huff, M.D., measured the impact of the drugs on cancer stem cells by counting the stem cells in bone marrow and blood samples drawn from the patients at several points throughout the seven-month study, which ended in March 2016.

Bone marrow-derived cancer stem cells at first increased by an average of 2.5-fold in the patients after two cycles of lenalidomide and dexamethasone alone. After MEDI-551 was added in the third and fourth months of treatment, the number of cancer stem cells decreased by half, on average, in 14 of the 15 patients.

By contrast, five newly diagnosed multiple myeloma patients who did not receive the extra antibody treatment had their cancer stem cell numbers swell 9.3-fold after an average of four months' treatment with the other two drugs. There were no serious adverse side effects among the patients in the study of the antibody.

Matsui and Huff are part of the Johns Hopkins research team that in 2002 was among the first to identify and isolate cancer stem cells in multiple myeloma, which is diagnosed in approximately 30,000 people in the U.S. annually. Their subsequent research showed how these cancer stem cells contribute to relapse in patients with multiple myeloma, and the scientists have been looking for new ways to target these cells with treatments that can halt their ability to create mature tumor cells and trigger relapse.

The antibody MEDI-551 targets a specific protein called CD19 found on the surface of multiple myeloma cancer stem cells, explains Matsui. "We chose to carry out this clinical trial in newly diagnosed patients because our original data showed that CD19 was almost always expressed by myeloma stem cells in these patients, whereas we don't know if that is the case in more advanced patients," he says.

The researchers also tested two different ways to measure cancer stem cells in patients: in tissue samples aspirated from bone marrow and in blood drawn from the patients throughout the study. "We wanted to see if these two assays gave similar results, and in this clinical trial, they were almost identical," Huff says. "Since it is much easier to draw blood than bone marrow from our patients, we think that we can primarily use blood to track multiple myeloma stem cells in the future."

Although most of the patients experienced a decrease in multiple myeloma cancer stem cells after three doses of MEDI-551, these stem cells increased in two of the patients, each of who had their cancer grow or spread during the course of the study.

Matsui, Huff and their colleagues plan to conduct further studies to determine the long-term impact of the antibody treatment in patients with multiple myeloma and to find out how the antibody might work in combination with other treatments.

"In other studies at Johns Hopkins, we have found that antibody therapies can work much better after a bone marrow transplant, especially allogeneic transplants, where patients receive bone marrow cells donated from a relative," says Matsui.
-end-
Funding for the study was provided by MedImmune Inc., the developers of MEDI-551. Matsui and Huff have received research funding and honoraria from MedImmune.

Funding and drugs for the study described in this presentation were provided by MedImmune Inc., the developers of MEDI-551. Huff and Matsui respectively served as a paid scientific advisory board member and consultant to MedImmune Inc. These arrangements have been reviewed and approved by The Johns Hopkins University in accordance with its conflict of interest policies.

Other Johns Hopkins researchers who contributed to the study include Douglas Gladstone, Ivan Borrello, Qiuju Wang and Christian Gocke. Their co-researchers include Shannon Marshall, Parthiv Mahadevia, Boyd Mudenda and Ronald Herbst of MedImmune Inc.

Johns Hopkins Medicine

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem cells are the repair cells of your body.  When there aren’t enough of them, or they aren’t working properly, chronic diseases can manifest and persist. From industry leaders, sport stars, and Hollywood icons to thousands of everyday, ordinary people, stem cell therapy has helped when standard medicine failed. Many of them had lost hope. These are their stories.

Neil H Riordan, author of MSC: Clinical Evidence Leading Medicine’s Next Frontier, the definitive textbook on clinical stem cell therapy, brings you an easy-to-read book about how and why stem cells work,... View Details


Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

Stem Cells: An Insider's Guide is an exciting new book that takes readers inside the world of stem cells guided by international stem cell expert, Dr. Paul Knoepfler. Stem cells are catalyzing a revolution in medicine. The book also tackles the exciting and hotly debated area of stem cell treatments that are capturing the public's imagination. In the future they may also transform how we age and reproduce. However, there are serious risks and ethical challenges, too. The author's goal with this insider's guide is to give readers the information needed to distinguish between the... View Details


Stem Cells: A Very Short Introduction
by Jonathan Slack (Author)

Embryonic stem cells have been hot-button topics in recent years, generating intense public interest as well as much confusion and misinformation. In this Very Short Introduction, leading authority Jonathan Slack offers a clear and informative overview of stem cells--what they are, what scientists do with them, what stem cell therapies are available today, and how they might be used in the future. Slack explains the difference between embryonic stem cells, which exist only in laboratory cultures, and tissue-specific stem cells, which exist in our bodies, and he discusses how... View Details


Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

The first authoritative yet accessible guide to this controversial topic

Stem Cell Research For Dummies offers a balanced, plain-English look at this politically charged topic, cutting away the hype and presenting the facts clearly for you, free from debate. It explains what stem cells are and what they do, the legalities of harvesting them and using them in research, the latest research findings from the U.S. and abroad, and the prospects for medical stem cell therapies in the short and long term.

Explains the differences between adult stem cells and embryonic/umbilical... View Details


The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

The book describes the journey into the growing arena of clinical stem cell therapy by highlighting not only the road that brought a team of physicians together but also real stories from a number of their patients that were given their health back through the magic of stem cell therapy. Your fat is loaded with stem cells that can be used now to treat and reverse a large number of inflammatory and degenerative conditions. Most people have no idea that these magical cells actually exist right within our bodies. They think that they must wait until Big Pharma or a university PhD manufactures... View Details


Stem Cells Are Everywhere
by Irv Weissman MD (Author)

An engaging introduction to stem cells for young scientists
 
How do you heal when you cut your skin or break a bone? How does your body keep making new blood or brain cells, or even second teeth? How does a plant keep growing larger? The answers lie in stem cells, which are found in every growing plant and animal. Keeping the subject simple enough for young readers, a pioneer of stem cell research explains cells, tissues, normal growth, what can go wrong, and how to fix it. View Details


Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cells: A Short Course is a comprehensive text for students delving into the rapidly evolving discipline of stem cell research. Comprised of eight chapters, the text addresses all of the major facets and disciplines related to stem cell biology and research. A brief history of stem cell research serves as an introduction, followed by coverage of stem cell fundamentals; chapters then explore embryonic and fetal amniotic stem cells, adult stem cells, nuclear reprogramming, and cancer stem cells. The book concludes with chapters on stem cell applications, including the role of stem... View Details


Stem Cells: Promise and Reality
by Lygia V Pereira (Author)

Stem Cells: Promises and Reality will tell you everything you have always wanted to know about stem cells, but could not understand the field from elsewhere. Stem cells are the great therapeutic promise of the century, and this evolving field of research and medicine brings with it many legal, ethical and psychological issues that must be discussed by society as a whole. Written so as to be accessible to general readers as well as specialists, this book explains what stem cells are, and the different aspects of stem cell research and applications. The book will enable the reader to understand... View Details


Essentials of Stem Cell Biology, Third Edition
by Robert Lanza (Editor), Anthony Atala (Editor)

First developed as an accessible abridgement of the successful Handbook of Stem Cells, Essentials of Stem Cell Biology serves the needs of the evolving population of scientists, researchers, practitioners, and students embracing the latest advances in stem cells. Representing the combined effort of 7 editors and more than 200 scholars and scientists whose pioneering work has defined our understanding of stem cells, this book combines the prerequisites for a general understanding of adult and embryonic stem cells with a presentation by the world's experts of the latest... View Details


Stem Cells: Scientific Facts and Fiction
by Christine Mummery (Author), Anja van de Stolpe (Author), Bernard Roelen (Author), Hans Clevers (Author)

Recent advances in the fields of medicine and technology have led to the development of stem cell therapy. A stem cell is a cell that has the potential to develop into many different types of cell in the body. It has the ability to divide and copy itself and at least one other specialized type of cell.

Stem Cells was written to provide information about the development of stem cell therapy, which can be used in the fields of research and medicine. The main goal of the book is to provide readers with an overview of the scientific facts about stem cells and its promising... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."