Nav: Home

NRL develops laser processing method to increase efficiency of optoelectronic devices

April 15, 2019

WASHINGTON -- Scientists at the U.S. Naval Research Laboratory (NRL) discovered a new method to passivate defects in next generation optical materials to improve optical quality and enable the miniaturization of light emitting diodes and other optical elements.

"From a chemistry standpoint, we have discovered a new photocatalytic reaction using laser light and water molecules, which is new and exciting," said Saujan Sivaram, Ph.D., lead author of the study. "From a general perspective, this work enables the integration of high quality, optically active, atomically thin material in a variety of applications, such as electronics, electro-catalysts, memory, and quantum computing applications."

The NRL scientists developed a versatile laser processing technique to significantly improve the optical properties of monolayer molybdenum disulphide (MoS2) -- a direct gap semiconductor -- with high spatial resolution. Their process produces a 100-fold increase in the material's optical emission efficiency in the areas "written" with the laser beam.

According to Sivaram, atomically thin layers of transition metal dichalcogenides (TMDs), such as MoS2, are promising components for flexible devices, solar cells, and optoelectronic sensors due to their high optical absorption and direct band gap.

"These semiconducting materials are particularly advantageous in applications where weight and flexibility are a premium," he said. "Unfortunately, their optical properties are often highly variable and non-uniform making it critical to improve and control the optical properties of these TMD materials to realize reliable high efficiency devices."

"Defects are often detrimental to the ability of these monolayer semiconductors to emit light," Sivaram said. "These defects act as non-radiative trap states, producing heat instead of light, therefore, removing or passivating these defects is an important step towards high efficiency optoelectronic devices."

In a traditional LED, approximately 90 percent of the device is a heat sink to improve cooling. Reduced defects enable smaller devices to consume less power, which results in a longer operational lifetime for distributed sensors and low-power electronics.

The researchers demonstrated that water molecules passivate the MoS2 only when exposed to laser light with an energy above the band gap of the TMD. The result is an increase in photoluminescence with no spectral shift.

Treated regions maintain a strong light emission compared to the untreated regions that exhibit much a weaker emission. This suggest that the laser light drives a chemical reaction between the ambient gas molecules and the MoS2.

"This is a remarkable achievement," said Berend Jonker, Ph.D., senior scientist and principal investigator. "The results of this study pave the way for the use of TMD materials critical to the success of optoelectronic devices and relevant to the Department of Defense mission."
-end-
The research team includes Saujan Sivaram, Ph.D.; Aubrey Hanbicki, Ph.D.; Matthew Rosenberger, Ph.D.; Hsun-Jen Chuang, Ph.D.; Kathleen McCreary, Ph.D.; and Berend Jonker, Ph.D., from the NRL Materials Science and Technology Division, and Glenn Jernigan, Ph.D., from the NRL Electronics Science and Technology Division. Sivaram and Rosenberger hold National Research Council (NRC) fellowships at NRL. Chuang holds an American Society for Engineering Education (ASEE) fellowship at NRL. The research results are reported in ACS Applied Materials & Interfaces; DOI: 10.1021/acsami.9b00390.

Naval Research Laboratory

Related Water Molecules Articles:

Breaking water molecules apart to generate clean fuel: Investigating a promising material
Scientists at the Tokyo Institute of Technology (Tokyo Tech) investigated a material that uses sunlight for splitting water molecules (H2O) to obtain dihydrogen (H2).
Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
There are no water molecules between the ions in the selectivity filter of potassium
Do only potassium ions pass through the selectivity filter of a potassium channel, or are there water molecules between the ions?
Our water cycle diagrams give a false sense of water security
Pictures of the earth's water cycle used in education and research throughout the world are in urgent need of updating to show the effects of human interference, according to new analysis by an international team of hydrology experts.
Water management helped by mathematical model of fresh water lenses
In this paper, the homeostasis of water lenses was explained as an intricate interaction of the following physical factors: infiltration to the lens from occasional (sporadic) rains, permanent evaporation from the water table, buoyancy due to a density contrast of the fresh and saline water, and the force of resistance to water motion from the dune sand.
Using water molecules to unlock neurons' secrets
EPFL researchers have developed a method to observe the electrical activity of neurons by analyzing the behavior of surrounding water molecules.
Molecular adlayer produced by dissolving water-insoluble nanographene in water
Even though nanographene is insoluble in water and organic solvents, Kumamoto University and Tokyo Institute of Technology researchers have found a way to dissolve it in water.
Water-worlds are common: Exoplanets may contain vast amounts of water
Scientists have shown that water is likely to be a major component of those exoplanets (planets orbiting other stars) which are between two to four times the size of Earth.
How ions gather water molecules around them
Charged particles in aqueous solutions are always surrounded by a shell of water molecules.
More Water Molecules News and Water Molecules Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.