Army scientists lead the way to produce tools for engineering biomolecules

April 15, 2019

Army scientists have discovered how to build novel synthetic biomolecule complexes that they believe are a critical step towards biotemplated advanced materials. Their work was recently featured in the March issue of Nature Chemistry.

A team of researchers from the U.S. Army Combat Capabilities Development Command's Army Research Laboratory, the Army's corporate research laboratory also known as ARL, and The University of Texas at Austin's Department of Molecular Biosciences, combined pairs of oppositely charged synthetic proteins to form hierarchical ordered, symmetrical structures through a strategy they termed as "supercharged protein assembly."

Dr. Jimmy Gollihar, a synthetic biology research scientist at ARL, along with University of Texas at Austin professors, Drs. Andrew Ellington and David W. Taylor, Jr., collaborated on this discovery.

The researchers said synthetic protein units had their surface charge artificially augmented to create either a positively or negatively charged protein unit to create supercharged proteins. This feature allowed the team to create self-assembled structures that are driven by charge alone.

As a demonstration of this capability, the team used computational modeling to design two fluorescent proteins, one super positive and the other super negative.

Gollihar explained that when the team synthesized and mixed the oppositely supercharged fluorescent proteins, it resulted in well-ordered aggregates.

"Our simple charged proteins assembled into well-ordered structures in a manner that has not been observed in nature," Gollihar said. "These protomers are aggregates of two oppositely charged pairs of fluorescent proteins. Once the protomers form, they can be reversibly assembled by altering the ionic strength or pH of the solution. At very low ionic strength, the proteins assemble into structures that are larger than bacterial cells."

Gollihar indicated this begins to address questions on how protein structures can be engineered into templates for advanced materials.

"Biology is exceptional at Angstrom-level scales that current manufacturing methods cannot access," he said. "By studying the self-assembly and functionalization at this level, it should prove possible to manufacture nanoscale materials for a host of Army-relevant applications.

He said synthetic biology is a key technology area that has disruptive potential to shape how the Army will fight and win in the future operational environment.

"These efforts will be followed by attempts to engineer protein structures with unique properties suitable for Army applications such as bio-enabled sensing and functional coatings," Gollihar said. "The ready assembly of this structure suggests that combining oppositely supercharged pairs of protein variants may provide broad opportunities for generating novel architectures via otherwise unprogrammed interactions."

This foundational work will continue, expanding in scale and composition, as part of Transformational Synthetic biology for Military Environments, or TRANSFORME, one of ARL's essential research programs.

"TRANSFORME is about programmable control of biological processes allowing not only expeditionary capabilities in multi-domain operation, but also adaptation at operational tempo, a pace that can define a country's dominance in battle," said Dr. Dimitra Stratis-Cullum, program manager for TRANSFORME.
-end-
To read the entire study -- Supercharging enables organized assembly of synthetic biomolecules -- visit Nature Chemistry.

U.S. Army Research Laboratory

Related Synthetic Biology Articles from Brightsurf:

Deep learning takes on synthetic biology
Machine learning is helping biologists solve hard problems, including designing effective synthetic biology tools.

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you
Scientists at Lawrence Berkeley National Laboratory have developed a new tool that adapts machine learning algorithms to the needs of synthetic biology to guide development systematically.

Cell-free synthetic biology comes of age
In a review paper published in Nature Reviews Genetics, Professor Michael Jewett explores how cell-free gene expression stands to help the field of synthetic biology dramatically impact society, from the environment to medicine to education.

Scientists develop electrochemical platform for cell-free synthetic biology
Scientists at the University of Toronto (U of T) and Arizona State University (ASU) have developed the first direct gene circuit to electrode interface by combining cell-free synthetic biology with state-of-the-art nanostructured electrodes.

Gene-OFF switches tool up synthetic biology
Wyss researchers and their colloaborators have developed two types of programmable repressor elements that can switch off the production of an output protein in synthetic biology circuits by up to 300-fold in response to almost any triggering nucleotide sequence.

Tennessee researchers join call for responsible development of synthetic biology
Engineering biology is transforming technology and science. Researchers in the international Genome Project-write, including two authors from the UTIA Center for Agricultural Synthetic Biology, outline the technological advances needed to secure a safe, responsible future in the Oct.

Scientists chart course toward a new world of synthetic biology
A UC Berkeley team with NSF funding has compiled a roadmap for the future of synthetic or engineering biology, based on the input of 80 leaders in the field from more than 30 institutions.

DFG presents position paper on synthetic biology
Clear distinction between synthetic biology and underlying methods required / No new potential risks associated with current research work

Commandeering microbes pave way for synthetic biology in military environments
A team of scientists from the US Army Research Laboratory and the Massachusetts Institute of Technology have developed and demonstrated a pioneering synthetic biology tool to deliver DNA programming into a broad range of bacteria.

BioBits: Teaching synthetic biology to K-12 students
As biologists have probed deeper into the genetic underpinnings of life, K-12 schools have struggled to provide a curriculum that reflects those advances.

Read More: Synthetic Biology News and Synthetic Biology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.