Nav: Home

New compound allows bacterial communication to be controlled by light

April 15, 2019

Scientists from the University of Groningen have succeeded in incorporating a light-controlled switch into a molecule used by bacteria for quorum sensing - a process by which bacteria communicate and subsequently control different cellular processes. With the molecule described, it is possible to either inhibit or stimulate communication. This makes it a very useful tool for further research into bacterial communication and its influence on different genetic pathways. The results were published on 15 April in the journal Chem.

In order to respond to their environment, bacteria 'talk' to each other through a form of chemical communication called quorum sensing. The cells secrete a signal molecule and at the same time monitor its concentration. As more cells secrete the signal molecule, it can exceed a threshold concentration and activate certain genetic pathways, for example, to produce toxins or form a protective biofilm.

Light-sensitive switch

'If we would be able to influence quorum sensing, we might be able to use it to treat serious infections,' says University of Groningen organic chemist Mickel Hansen. 'And it would also be useful to investigate how quorum sensing exactly works.' To do this, it would be useful to have a modulator of quorum sensing that could be externally controlled. That is why Hansen and colleagues in the synthetic organic chemistry group led by Professor Ben Feringa set out to build a light-sensitive switch into a molecule used by bacteria as a signal for quorum sensing.

The molecule is made up of a head and a flexible carbon-based tail, connected via a β-keto-amide linker. The plan was to incorporate a switch into the tail. 'This meant we had to connect the modified tail to the head via β-keto-amide linkage. However, the synthetic process to obtain this linkage produces a very unstable intermediate, which made it almost impossible to synthesize the molecule.'

Library

Building on the extensive experience of the synthetic organic chemistry group at the Stratingh Institute of Chemistry at the University of Groningen, the researchers came up with a solution in the form of a new coupling reaction with a stabilized intermediate. Using this intermediate, they were able to synthesize photoswitchable derivatives in a fast and straightforward way.

Hansen, together with Master's student Jacques Hille, produced a 'library' of 16 different compounds that had the potential to act as agonists or antagonists of quorum sensing. All were fitted with a light-operated switch. All compounds were based on a molecule that is used in one particular quorum sensing system in Pseudomonas aeruginosa, which has about five of these quorum sensing systems. In collaboration with molecular biologists from the lab of Professor of Molecular Microbiology Arnold Driessen, also at the University of Groningen, the genes for one of these systems were transferred to an E. coli reporter strain, allowing any effect of the newly synthesized compounds to be tested without the interference of other quorum sensing mechanisms.

Toxin production

Bioactivity tests on the compounds obtained showed which parts of the molecule were crucial to controlling quorum sensing. The optimum number of carbon atoms making up the tail appeared to be four. Flipping the switch with light caused the tail to bend. Remarkably, the straight tail had no effect, whereas the bent tail induced the quorum sensing signal. Hansen: 'Overall, it appears that small changes in the molecule can have a large effect on its activity, but we don't yet know exactly why.'

They did find one compound that was able to strongly inhibit the quorum sensing signal and - after irradiation with light, leading to the bending of the tail - to also strongly stimulate it. The difference in activity was more than 700-fold, which is huge. 'Such a large difference has, to our knowledge, never been shown before for light-switched bioactive molecules.' This particular molecule will be a very useful tool for investigating how bacteria communicate. 'In the study, we showed that we could light-control toxin production in a Pseudomonas strain with our switchable modulator. This will be a powerful tool for both clinical and fundamental research into the mechanism of quorum sensing.'
-end-
The study was a cooperative effort of microbiologists from the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and organic chemists at the Stratingh Institute for Chemistry, both part of the Faculty of Science and Engineering at the University of Groningen.

Reference: Mickel J. Hansen, Jacques I.C. Hille, Wiktor Szymanski, Arnold J.M. Driessen, and Ben L. Feringa: Easily accessible, highly potent, photocontrolled modulators of bacterial communication. Chem, 15 April 2019.

University of Groningen

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.