Nav: Home

Novel approach promises ready access to hard-to-study proteins

April 15, 2019

MADISON, Wis. -- DNA and the genome, we know, provide the blueprint for life. But it is the proteins made according to the genome's instructions that are the nuts and bolts of living organisms, providing the molecular building blocks for all cells and that are critical targets for therapy.

There are many different kinds of proteins that make up the human body and they are widely studied. But scientists have been hampered by their inability to easily analyze some proteins that are difficult to solubilize in water. This is especially true of proteins that reside in the membranes of cells and which have the most potential as new drug targets.

In a study published today (April 15, 2019) in the journal Nature Methods, a team led by University of Wisconsin-Madison associate professor of cell and regenerative biology and chemistry Ying Ge reports the development of a novel strategy capable of extracting and driving hard-to-reach proteins into water solution where they can be effectively studied using mass spectrometry, a powerful analytical technique. The new approach promises a trove of biological insights and, importantly, may help identify therapeutically relevant proteins and provide new disease diagnostic techniques.

"Approximately one-third of the proteome in living organisms are membrane proteins," explains Ge, who works in the UW School of Medicine and Public Health. "They play important roles in many biological processes and account for about two-thirds of known 'druggable' targets in the cell."

Moreover, as proteins undergo change due to things like aging, disease or even therapy, they can provide clues to the courses of diseases or conditions, providing further insights into changes occurring at the molecular level.

Scientists have developed a variety of methods for studying proteins and technologies such as mass spectrometry have evolved to the point where researchers can measure the molecular weights of protein molecules accurately, revealing details in the protein sequence and modifications that will help the design and discovery of effective new drugs.

But scientists must first extract proteins into a water solution from cell or tissue samples by using surfactants, detergents. However, conventional surfactants can interfere with mass spectrometry analysis of proteins as they overwhelm the signals from proteins in mass spectrometers. Ge's team sought an agent that met three key criteria: It needed to be water soluble and rapidly degradable; it needed to be a strong surfactant; and it needed to be compatible with whole protein mass spectrometry.

To help extract membrane proteins from cells and tissues for analysis, Ge and her colleagues, including lead author Kyle Brown, a UW-Madison graduate student, postdoctoral fellow Tania Guardado, and chemistry Professor Song Jin, designed and screened a large number of chemical compounds and identified one that could be molded into a "photocleavable" surfactant called Azo.

Azo, notes Ge, functions much like conventional surfactants except that a chemical bond that can be broken by simple exposure to ultraviolet light is added to the middle of the surfactant molecule. When the bond is cleaved by exposure to light just prior to undergoing mass spectrometry analysis, Azo breaks apart, leaving only the protein molecules and eliminating the detergent that interferes with the ultrasensitive analysis.

"Azo enables effective mass spectrometry analysis of whole proteins, and opens up new opportunities to study membrane proteins" that were inaccessible previously, says Ge. "This significantly advances the whole protein 'top-down' mass spectrometry, which provides a bird's eye view of many forms of the proteins from the same gene. Such information is essential for understanding biological systems and deciphering disease mechanisms as well as identifying key diagnostic markers and new therapeutic targets."

This is the first time such engineered molecules with photocleavable bonds have been utilized in whole protein analysis. Notably, Azo can be easily synthesized and can be used as a replacement for the most commonly used surfactants.

The Wisconsin Alumni Research Foundation has filed patent applications on the new technology.
-end-
CONTACT: Ying Ge, (608) 265-4744, ying.ge@wisc.edu

--Terry Devitt (608) 262-8282, trdevitt@wisc.edu

This research is supported by National Institutes of Health R01 GM117058 (to S.J. and Y.G.). Y.G. acknowledges R01 HL109810, R01 HL096971, R01 GM125085 and S10 OD018475.

University of Wisconsin-Madison

Related Mass Spectrometry Articles:

Study shows that a high protein intake in early childhood is associated with higher body fat mass but not higher lean mass
New research presented at this year's European Congress on Obesity (ECO) in Porto, Portugal, May 17-20, shows that a high intake of protein in early childhood, particularly from animal food sources, is associated with a higher body mass index (BMI) due to increased body fat and not increases in fat-free mass.
Triboelectric nanogenerators boost mass spectrometry performance
Triboelectric nanogenerators (TENG) convert mechanical energy harvested from the environment to electricity for powering small devices such as sensors or for recharging consumer electronics.
'Corrective glass' for mass spectrometry imaging
Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now improved mass spectrometry imaging in such a way that the distribution of molecules can also be visualized on rippled, hairy, bulgy or coarse surfaces.
How to decrease the mass of aircrafts
Members of the Department of Chemistry of Lomonosov Moscow State University have created unique polymer matrices for polymer composites based on novel phthalonitrile monomers.
Mass insect migrations in UK skies
For the first time, scientists have measured the movements of high-flying insects in the skies over southern England -- and found that about 3.5 trillion migrate over the region every year.
Immunotherapy for cancer: New method identifies target antigens by mass spectrometry
New cancer therapies harness the immune system to fight tumors.
Rapid and mass production of graphene, using microwaves
An international team of researchers, affiliated with UNIST has discovered a simple new method for producing large quantities of the promising nanomaterial graphene.
New method helps identify antibiotics in mass spectrometry datasets
An international team of computer scientists has for the first time developed a method to find antibiotics hidden in huge but still unexplored mass spectrometry datasets.
A fundamental theory of mass generation
A team of four theoretical physicists, Francesco Sannino from Cp3-Origins at the University of Southern Denmark, Alessandro Strumia from CERN theory division and Pisa Univ., Andrea Tesi from the Enrico Fermi Institute at the University of Chicago in US, and Elena Vigiani from Pisa University have recently published in the Journal of High Energy Physics their work
Quantum leap in the reliability of mass spectrometry-based proteomics
Modern mass spectrometry systems enable scientists to routinely determine the quantitative composition of cells or tissue samples.

Related Mass Spectrometry Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...