Gene-based factor VIIa prevents bleeding episodes in animals with hemophilia

April 15, 2019

Hematology researchers have further refined how a treatment currently used on an urgent basis to control bleeding in hemophilia patients holds promise as a preventive treatment as well. A study in animals may set the stage for a new therapy for a subset of patients with hemophilia who now develop antibodies to the standard maintenance treatment and then require on-demand "bypass" therapy.

"Patients who develop antibodies to the coagulation factors usually prescribed for hemophilia have a complicated treatment," said study leader Paris Margaritis, DPhil, a hematology researcher in the Raymond G. Perelman Center for Cellular and Molecular Therapeutics at Children's Hospital of Philadelphia (CHOP). "A different factor, called coagulation factor VIIa, restores blood clotting when given after a bleed occurs, but we don't know the target level of circulating factor VIIa that would prevent bleeds before they start. Our new preclinical results are the first to show target levels that could act prophylactically."

Margaritis explained that the thresholds of circulating factor VIIa that prevented bleeding episodes in animals can be incorporated into future clinical trials in patients.

The study team published its findings Feb. 12, 2019 in Blood Advances.

Hemophilia is an inherited bleeding disorder in which gene mutations impair the blood's ability to clot. When not fatal, severe hemophilia causes painful, often disabling spontaneous bleeding and joint damage. The disorder commonly occurs in two types, hemophilia A and hemophilia B, distinguished by which natural coagulation factor is affected. An absence or deficiency of blood factor VIII leads to hemophilia A; in hemophilia B, factor IX is impaired.

Managing hemophilia may involve a series of measures and countermeasures, in which clinicians make use of blood factors. For years, the standard treatment has been to provide frequent intravenous infusions of manufactured factor, both prophylactically and on demand. However, one third of patients with hemophilia A and up to 5 percent with hemophilia B develop inhibitors from this factor replacement therapy that render the treatment ineffective.

A long-term technique called immune tolerance induction uses repeated injections of factor to eliminate inhibitors, but more than 40 percent of patients fail this therapy. For those relapsed patients, the only alternative is to implement a bypass strategy, infusing other compounds that enable the blood to coagulate: activated recombinant clotting factor VIIa, activated prothrombin complex, or more recently, an antibody that has just been approved by the FDA for all hemophilia A patients. "While factor VIIa continues to be widely used, we still don't know what the level of circulating factor VIIa needs to be in order to use it safely on a prophylactic basis in humans," said Margaritis.

Margaritis and colleagues have extensively investigated gene transfer in animal models (mice and dogs). In these experiments, they deliver corrective DNA carrying the coded instructions to produce factor VIIa and reduce bleeding episodes. The current study used a hemophilia A rat model genetically designed to experience bleeding episodes. Novo Nordisk A/S, the pharmaceutical company that is the main source of the bypass agent VIIa for patients, provided the rats.

The study team used adeno-associated virus (AAV) as a vector to deliver a rat factor VIIa gene. The gene expressed factor VIIa with a dose-dependent effect, simulating prophylaxis. Factor that reached a specific level in the bloodstream reduced bleeding in the hemophilia A rats, and at a higher level, eliminated those bleeds altogether.

"For the first time, we have threshold levels of factor VIIa for prophylactic use," said Margaritis. He added, "Because factor VIIa bypasses the need for factor VIII or IX, it should work in both hemophilia A and hemophilia B. Furthermore, it works whether or not inhibitors are present in the blood."

Margaritis said next steps in this research will be to translate threshold levels in rats to levels in humans, and to use that information as a basis for testing the approach in clinical trials.
-end-
Funding support for this study came from Novo Nordisk A/S and from the National Institutes of Health (grants T32-HL07439 and T32-HL007150).

Disclosures: co-author Bo Wiinberg is an employee of Novo Nordisk A/S and co-author Mads Kjelgaard-Hansen is an employee of AscendisPharma A/S. Margaritis receives research funding through competitive grants from the Bayer Hemophilia Awards Program and salary (spouse) from Bristol-Myers Squibb and CSL Behring. Spark Therapeutics licenses technology that generated the rat VIIa used in this study. CHOP as an institution holds equity in Spark.

Shannon M. Zintner et al, "Gene-based FVIIa prophylaxis modulates the spontaneous bleeding phenotype of hemophilia A rats," Blood Advances, Feb. 12, 2019. http://doi.org/10.1182/bloodadvances.2018027219

Children's Hospital of Philadelphia: Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals, and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country. In addition, its unique family-centered care and public service programs have brought the 564-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu

Children's Hospital of Philadelphia

Related Clinical Trials Articles from Brightsurf:

Nearly 1 in 5 cancer patients less likely to enroll in clinical trials during pandemic
A significant portion of cancer patients may be less likely to enroll in a clinical trial due to the ongoing coronavirus pandemic.

COVID-19 clinical trials lack diversity
Despite disproportionately higher rates of COVID-19 infection, hospitalization and death among people of color, minority groups are significantly underrepresented in COVID-19 clinical trials.

Why we should trust registered clinical trials
In a time when we have to rely on clinical trials for COVID-19 drugs and vaccines, a new study brings good news about the credibility of registered clinical trials.

Inclusion of children in clinical trials of treatments for COVID-19
This Viewpoint discusses the exclusion of children from coronavirus disease 2019 (COVID-19) clinical trials and why that could harm treatment options for children.

Review evaluates how AI could boost the success of clinical trials
In a review publishing July 17, 2019 in the journal Trends in Pharmacological Sciences, researchers examined how artificial intelligence (AI) could affect drug development in the coming decade.

Kidney patients are neglected in clinical trials
The exclusion of patients with kidney diseases from clinical trials remains an unsolved problem that hinders optimal care of these patients.

Clinical trials beginning for possible preeclampsia treatment
For over 20 years, a team of researchers at Lund University has worked on developing a drug against preeclampsia -- a serious disorder which annually affects around 9 million pregnant women worldwide and is one of the main causes of death in both mothers and unborn babies.

Underenrollment in clinical trials: Patients not the problem
The authors of the study published this month in the Journal of Clinical Oncology investigated why many cancer clinical trials fail to enroll enough patients.

When designing clinical trials for huntington's disease, first ask the experts
Progress in understanding the genetic mutation responsible for Huntington's disease (HD) and at least some molecular underpinnings of the disease has resulted in a new era of clinical testing of potential treatments.

New ALS therapy in clinical trials
New research led by Washington University School of Medicine in St.

Read More: Clinical Trials News and Clinical Trials Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.