# Speeding-up quantum computing using giant atomic ions

April 15, 2020An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Scientists from the University of Nottingham and University of Stockholm have sped-up trapped ion quantum computing using a new experimental approach - trapped Rydberg ions; their results have just been published in

*Nature*.

In conventional digital computers, logic gates consist of operational bits that are silicon based electronic devices. Information is encoded in two classical states ("0" and "1") of a bit. This means that capacities of a classical computer increase linearly with the number of bits. To deal with emerging scientific and industrial problems, large computing facilities or supercomputers are built.

**Quantum entanglement enhancing capacity**

A quantum computer is operated using quantum gates, i.e. basic circuit operations on quantum bits (qubits) that are made of microscopic quantum particles, such as atoms and molecules. A fundamentally new mechanism in a quantum computer is the utilisation of quantum entanglement, which can bind two or a group of qubits together such that their state can no longer be described by classical physics. The capacity of a quantum computer increases exponentially with the number of qubits. The efficient usage of quantum entanglement drastically enhances the capacity of a quantum computer to be able to deal with challenging problems in areas including cryptography, material, and medicine sciences.

Among the different physical systems that can be used to make a quantum computer, trapped ions have led the field for years. The main obstacle towards a large-scale trapped ion quantum computer is the slow-down of computing operations as the system is scaled-up. This new research may have found the answer to this problem.

The experimental work was conducted by the group of Markus Hennrich at SU using giant Rydberg ions, 100,000,000 times larger than normal atoms or ions. These huge ions are highly interactive, and exchange quantum information in less than a microsecond. The interaction between them creates quantum entanglement. Chi Zhang from the University of Stockholm and colleagues used the entangling interaction to carry out a quantum computing operation (an entangling gate) around 100 times faster than is typical in trapped ion systems.

Chi Zhang explains, "Usually quantum gates slow down in bigger systems. This isn't the case for our quantum gate and Rydberg ion gates in general! Our gate might allow quantum computers to be scaled up to sizes where they are truly useful!"

Theoretical calculations supporting the experiment and investigating error sources have been conducted by Weibin Li (University of Nottingham, UK) and Igor Lesanovsky (University of Nottingham, UK, and University of Tübingen, Germany). Their theoretical work confirmed that there is indeed no slowdown expected once the ion crystals become larger, highlighting the prospect of a scalable quantum computer.

Weibin Li, Assistant Professor, School of Physics and Astronomy at the University of Nottingham adds: "Our theoretical analysis shows that a trapped Rydberg ion quantum computer is not only fast, but also scalable, making large-scale quantum computation possible without worrying about environmental noise. The joint theoretical and experimental work demonstrate that quantum computation based on trapped Rydberg ions opens a new route to implement fast quantum gates and at the same time might overcome many obstacles found in other systems."

Currently the team is working to entangle larger numbers of ions and achieve even faster quantum computing operations.

-end-

University of Nottingham

**Related Quantum Computing Articles:**

New method predicts spin dynamics of materials for quantum computing

Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Speeding-up quantum computing using giant atomic ions

An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing

Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship

In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

Diversity may be key to reducing errors in quantum computing

In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

'Valley states' in this 2D material could potentially be used for quantum computing

New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.

New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.

Sound of the future: A new analog to quantum computing

In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.

In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.

Imaging of exotic quantum particles as building blocks for quantum computing

Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.

Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.

Virginia Tech researchers lead breakthrough in quantum computing

A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.

A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.

Limitation exposed in promising quantum computing material

Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.

Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.

## Trending Science News

**Current Coronavirus (COVID-19) News**

## Top Science Podcasts

We have hand picked the**top science podcasts of 2020**.

**Now Playing: TED Radio Hour**

**Clint Smith**

The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.

**Now Playing: Science for the People**

**#562 Superbug to Bedside**

By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.

**Now Playing: Radiolab**

**Nina**

Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today. Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.