Hot qubits break one of the biggest constraints to practical quantum computers

April 15, 2020

Most quantum computers being developed around the world will only work at fractions of a degree above absolute zero. That requires multi-million-dollar refrigeration and as soon as you plug them into conventional electronic circuits they'll instantly overheat.

But now researchers led by Professor Andrew Dzurak at UNSW Sydney have addressed this problem.

"Our new results open a path from experimental devices to affordable quantum computers for real world business and government applications," says Professor Dzurak.

The researchers' proof-of-concept quantum processor unit cell, on a silicon chip, works at 1.5 Kelvin - 15 times warmer than the main competing chip-based technology being developed by Google, IBM, and others, which uses superconducting qubits.

"This is still very cold, but is a temperature that can be achieved using just a few thousand dollars' worth of refrigeration, rather than the millions of dollars needed to cool chips to 0.1 Kelvin," explains Dzurak.

"While difficult to appreciate using our everyday concepts of temperature, this increase is extreme in the quantum world."

Quantum computers are expected to outperform conventional ones for a range of important problems, from precision drug-making to search algorithms. Designing one that can be manufactured and operated in a real-world setting, however, represents a major technical challenge.

The UNSW researchers believe that they have overcome one of the hardest obstacles standing in the way of quantum computers becoming a reality.

In a paper published in the journal Nature today, Dzurak's team, together with collaborators in Canada, Finland and Japan, report a proof-of-concept quantum processor unit cell that, unlike most designs being explored worldwide, doesn't need to operate at temperatures below one-tenth of one Kelvin.

Dzurak's team first announced their experimental results via the academic pre-print archive in February last year. Then, in October 2019, a group in the Netherlands led by a former post-doctoral researcher in Dzurak's group, Menno Veldhorst, announced a similar result using the same silicon technology developed at UNSW in 2014. The confirmation of this 'hot qubit' behaviour by two groups on opposite sides of the world has led to the two papers being published 'back-to-back' in the same issue of Nature today.

Qubit pairs are the fundamental units of quantum computing. Like its classical computing analogue - the bit - each qubit characterises two states, a 0 or a 1, to create a binary code. Unlike a bit, however, it can manifest both states simultaneously, in what is known as a "superposition".

The unit cell developed by Dzurak's team comprises two qubits confined in a pair of quantum dots embedded in silicon. The result, scaled up, can be manufactured using existing silicon chip factories, and would operate without the need for multi-million-dollar cooling. It would also be easier to integrate with conventional silicon chips, which will be needed to control the quantum processor.

A quantum computer that is able to perform the complex calculations needed to design new medicines, for example, will require millions of qubit pairs, and is generally accepted to be at least a decade away. This need for millions of qubits presents a big challenge for designers.

"Every qubit pair added to the system increases the total heat generated," explains Dzurak, "and added heat leads to errors. That's primarily why current designs need to be kept so close to absolute zero."

The prospect of maintaining quantum computers with enough qubits to be useful at temperatures much colder than deep space is daunting, expensive and pushes refrigeration technology to the limit.

The UNSW team, however, have created an elegant solution to the problem, by initialising and "reading" the qubit pairs using electrons tunnelling between the two quantum dots.

The proof-of-principle experiments were performed by Dr Henry Yang from the UNSW team, who Dzurak describes as a "brilliant experimentalist".
-end-
Other authors on the paper include Ross Leon, Jason Hwang (now at the University of Sydney), Andre Saraiva, Tuomo Tanttu, Wister Huang, Kok-Wai Chan and Fay Hudson, all from Professor Dzurak's group, as well as long-time collaborators Dr Arne Laucht and Professor Andrea Morello from UNSW.

Dr Kuan-Yen from Aalto University in Finland assisted the device fabrication team, while Professor Kohei Itoh from Keio University in Japan provided enriched silicon-28 wafers from which the devices were made. The qubit devices incorporated nano-scale magnets to help enable qubit operation, and these were designed with support from a team led by Professor Michel Pioro-Ladrière at Université de Sherbrooke in Canada, including his PhD student Julien Camirand Lemyre.

University of New South Wales

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.