Dartmouth researchers discover chromium's hidden magnetic talents

April 16, 2008

HANOVER, NH - Two Dartmouth researchers have determined that the element chromium displays electrical properties of magnets in surprising ways. This finding can be used in the emerging field of "spintronics," which might someday contribute to new and more energy efficient ways of processing and storing data.

The study, titled "Electrical effects of spin density wave quantization and magnetic domain walls in chromium," will be published in the April 17 issue of the journal Nature.

Electrons have an intrinsic angular momentum, called spin, in addition to their electrical charge. In electronics work, it is the charge of the electron that is used for calculations and transmitting information. In spintronics, it is the electron spin that is exploited.

"The phenomena that we have discovered are likely to lead to new applications of chromium," says Yeong-Ah Soh, the lead researcher on the paper and an associate professor of physics and astronomy at Dartmouth. She worked on the study with Ravi Kummamuru, a former post-doctoral research associate at Dartmouth now at the University of Illinois at Urbana-Champagne.

She goes on to explain that in essence, this indicates that a simple and well-known element, chromium, displays different electrical properties on heating and cooling. These differences reflect subtle internal rearrangements of the electrons and their spins.

In ferromagnets, the kind of common magnet you might see on a refrigerator, the spins of electrons interact with each other leading to alignment. In antiferromagnets, however, the interactions between neighboring electron spins are such that they are opposed. Researchers have long studied the electrical properties of ferromagnets and the influence of electron spin. Less attention has been paid, according to Soh and Kummamuru, to the influence of spin on the electrical properties in antiferromagnets, where it is more difficult to manipulate, and chromium is special since it is the only simple element that is an antiferromagnet.

"Antiferromagnets are used in numerous fields: physics, materials science, and chemistry, and they are increasingly used in technology, where they are found in the tiny heads that read the data on computer disc drives," says Soh. "Our research opens the entire new field of controlled electrical effects at a slightly-larger-than-quantum scale in antiferromagnets. The findings show that not only ferromagnets can be used in spintronics; there is a possibility that antiferromagnets can also be employed to manipulate and store information."
-end-


Dartmouth College

Related Spintronics Articles from Brightsurf:

A four-state magnetic tunnel junction for novel spintronics applications
Researchers have introduced a new type of MTJ with four resistance states, and successfully demonstrated switching between the states with spin currents.

Ultrafast electrons in magnetic oxides: A new direction for spintronics?
Special metal oxides could one day replace semiconductor materials that are commonly used today in processors.

Efficient valves for electron spins
Researchers at the University of Basel in collaboration with colleagues from Pisa have developed a new concept that uses the electron spin to switch an electrical current.

Magnetic memory states go exponential
Researchers showed that relatively simple structures can support exponential number of magnetic states - much greater than previously thought - and demonstrated switching between the states by generating spin currents.

New breakthrough in 'spintronics' could boost high speed data technology
Scientists have made a pivotal breakthrough in the important, emerging field of spintronics -- which could lead to a new high speed energy efficient data technology.

A path to new nanofluidic devices applying spintronics technology
Japanese scientists have elucidated the mechanism of the hydrodynamic power generation using spin currents in micrometer-scale channels, finding that power generation efficiency improves drastically as the size of the flow is made smaller.

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates
An Australian has published an extensive review of spin-gapless semiconductors (SGSs), a new class of 'zero bandgap' materials which have fully spin polarised electrons and holes, and first proposed in 2008 by the review team's lead, Professor Xiaolin Wang (University of Wollongong).

Graphene and 2D materials could move electronics beyond 'Moore's Law'
A team of researchers based in Manchester, the Netherlands, Singapore, Spain, Switzerland and the USA has published a new review on a field of computer device development known as spintronics, which could see graphene used as building block for next-generation electronics.

Toward a more energy-efficient spintronics
In order to generate and detect spin currents, spintronics traditionally uses ferromagnetic materials whose magnetization switching consume high amounts of energy.

Computing with molecules: A big step in molecular spintronics
Chemists and physicists at Kiel University joined forces with colleagues from France, and Switzerland to design, deposit and operate single molecular spin switches on surfaces.

Read More: Spintronics News and Spintronics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.