Nav: Home

Grafted brain organoids provide insight into neurological disorders

April 16, 2018

LA JOLLA--(April 16, 2018) Many neurological disorders--Alzheimer's, schizophrenia, autism, even depression--have lagged behind in new therapies. Because the brain is so complex, it can be difficult to discover new drugs and even when a drug is promising in animal models, it often doesn't work for humans.

Scientists are aiming to change that with stem cell technology by taking skin cells from a patient and turning those cells into neurons. Researchers can then test new drugs and study the development of disease in these lab-grown neurons, and even test the potential to use these "personalized neurons" for tissue replacement via transplantation to cure a damaged part of the brain. However, while biologists have already had success in growing tiny, stem-cell-based brain-like "organoids" in dishes or test tubes for diagnostic and therapeutic purposes, these model systems are still a long way from representing the complexity of the brain.

Scientists from the Salk Institute report a new approach that can develop more sophisticated organoid models by ensuring they receive sufficient oxygen and other nutrients via transplantation into rodents. The work, published in Nature Biotechnology on April 16, 2018, could yield insights into the development of cures for brain disorders; speed up the testing of drugs; and even pave the way for someday transplanting healthy populations of human cells into people's brains to replace damaged or dysfunctional tissue.

"Brain organoids are powerful tools for investigating human brain development and disorders," says senior author Rusty Gage, professor of Salk's Laboratory of Genetics. "But currently they do not fully represent native physiological environments. This work brings us one step closer to a more faithful, functional representation of the human brain and could help us design better therapies for neurological and psychiatric diseases."

Brain organoids grown in culture dishes or test tubes are structurally and functionally limited because, without a system of blood vessels, nutrients cannot reach the interior of their 3D structure. This reduces organoids' survival time and complexity, as cells cannot undergo as many divisions to increase their number or to diversify cell type. Although some researchers have attempted to address these limitations by simultaneously grafting vascular tissue onto organoids, this approach still does not fully mimic the cellular microenvironment of an actual brain.

The Gage lab sought to replicate a more supportive physiological environment by grafting human stem-cell-based organoids into a blood-vessel-rich area of the mouse brain. The grafted human organoids integrated into the host environment, formed both neurons and neuronal support cells called astrocytes, and were surveyed by immune cells. Significantly, the team saw not only native blood vessels, but vessels with blood flowing through them--a first for organoids.

"That was a big accomplishment," says Abed AlFattah Mansour, a Salk research associate and the paper's first author. "We saw infiltration of blood vessels into the organoid and supplying it with blood, which was exciting because it's perhaps the ticket for organoids' long-term survival."

As part of the study, the Salk team divided each organoid in half before transplantation, and maintained one of the halves in culture so they could directly compare the benefit of both environments. They found that the cultured halves were filled with dying cells after a few months, while the age-matched organoids in the rodents were healthy.

To find out if the transplanted organoids were functional as well as healthy, the team conducted calcium imaging tests, in which neurons produce a dye when they fire. And, indeed, the neurons within the organoids were firing in a synchronized way. Additionally, the team used a technique called optogenetics (where cells are made responsive to light) to confirm that the grafted neurons were forming connections with each other and with the host organism, which is also a first.

"This indicates that the increased blood supply not only helped the organoid to stay healthy longer, but also enabled it to achieve a level of neurological complexity that will help us better understand brain disease," says Mansour.

Human transplantation in animals has been used for decades in brain and other tissues to enhance survival and test for mature function.

"This work builds on a grafting technique I helped develop in 1984," adds Gage, who holds the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases. "It is gratifying to see that it works so well with brain organoids, which have immense potential to elucidate brain function in neuropsychiatric disease."
-end-
Other authors included: J. Tiago Gonçalves, formerly of Salk and now at Albert Einstein College of Medicine; and Cooper W. Bloyd, Hao Li, Sarah Fernandes, Daphne Quang, Stephen Johnston, Sarah L. Parylak and Xin Jin of Salk.

The work was funded by the National Institutes of Health (U19 MH106434, U01 MH106882), The Paul G. Allen Family Foundation, Bob and Mary Jane Engman, The Leona M. and Harry B. Helmsley Charitable Trust Grant (2012-PG-MED), Annette C. Merle-Smith, The G. Harold and Leila Y. Mathers Foundation, JPB Foundation, Dolby Family Ventures and NIH grants (R01NS083815, R01AG047669), the CIRM Bridges to Stem Cell Research Internship Program, an EMBO Postdoctoral Long-term Fellowship (ALTF 1214-2014/European Commission FP7-Marie Curie Actions, LTFCOFUND2013 and GA-2013-609409) and the Human Frontiers Science Program (HFSP Long-Term Fellowship--LT001074/2015).

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology, plant biology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Salk Institute

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Neuron: Cell and Molecular Biology
by Irwin B. Levitan (Author), Leonard K. Kaczmarek (Author)

The Myth of Mirror Neurons: The Real Neuroscience of Communication and Cognition
by Gregory Hickok (Author)

From Neurons to Neighborhoods : The Science of Early Childhood Development
by Committee on Integrating the Science of Early Childhood Development (Author), Youth, and Families Board on Children (Author), National Research Council (Author), Committee on Integrating the Science of Early Childhood Development (Author), Jack P. Shonkoff (Editor), Deborah A. Phillips (Editor)

The 7 Secrets of Neuron Leadership: What Top Military Commanders, Neuroscientists, and the Ancient Greeks Teach Us about Inspiring Teams
by W. Craig Reed (Author), Gordon R. England (Foreword)

From Neuron to Brain
by John G. Nicholls (Author), A. Robert Martin (Author), David A. Brown (Author), Mathew E. Diamond (Author), David A. Weisblat (Author), Paul A. Fuchs (Author)

From Photon to Neuron: Light, Imaging, Vision
by Philip Nelson (Author)

Schizophrenia Revealed: From Neurons to Social Interactions
by Michael Foster Green (Author)

The NEURON Book
by Nicholas T. Carnevale (Author), Michael L. Hines (Author)

The Cortical Neuron
by Michael J. Gutnick (Editor), Istvan Mody (Editor)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...