Two is better than one to improve brain function in Alzheimer's disease mouse model

April 16, 2018

Using two complementary approaches to reduce the deposits of amyloid-beta in the brain rather than either approach alone improved spatial navigation and memory in a mouse model of Alzheimer's disease. These findings suggest that similar combination treatments also might help patients with Alzheimer's disease in the future. The study appears in the Journal of Experimental Medicine.

"Many of the therapies that are currently being developed to treat Alzheimer's disease focus on reducing the levels of amyloid-beta," said corresponding author Dr. Joanna Jankowsky, associate professor of neuroscience, molecular and cellular biology, neurology, and neurosurgery at Baylor College of Medicine. "Amyloid-beta is a small protein that is abundant in the amyloid plaques that characterize Alzheimer's disease."

All previous clinical trials designed to reduce the levels of amyloid-beta using one therapy at a time have had limited success. Jankowsky and her colleagues have previously shown that combining two complementary treatments to reduce amyloid-beta not only curbs further plaque growth, but also helps to clear plaques that have already formed. With a combination approach, animals finished the study with less amyloid than they had at the start of treatment. In this study, Jankowsky and colleagues determined for the first time the benefits of dual amyloid-beta treatment on brain functions, such as spatial navigation and memory, in a mouse model of Alzheimer's disease.

Two is better than one

To reduce the levels of amyloid-beta the researchers attacked the problem from two fronts. On one front, they worked with a mouse model genetically engineered to stop the production of amyloid-beta. On the other front, they promoted the elimination of amyloid-beta with antibodies that bind to this protein and promote its elimination.

"Using this combined approach, we were able to reduce the levels of amyloid-beta, but, importantly, restored spatial learning and memory to the level observed in healthy mice," Jankowsky said.

The other contribution of this study was the identification of potential alternative therapeutic targets.

"Dr. Angie Chiang, a recent Ph.D. graduate from my lab and the first author of this work, was interested in identifying a molecular mechanism supporting our observations and decided to look at the mTOR pathway," Jankowsky said.

The mTOR protein is part of a complex that carries out a multitude of functions within cells, including the formation of synapses -- the connections between neurons-- their maintenance and plasticity. This pathway also regulates autophagy, one of the cellular processes that eliminates amyloid-beta. The mTOR pathway sits at the intersection of these processes that Jankowsky and her colleagues found changed as a result of treatment.

"The neurons had roadblocks that were causing them to swell and malfunction; the double treatment helped clear that roadblock," Jankowsky said. "Also, synapses lost as a result of the amyloid deposits were rebuilt, and the animals improved learning and memory."

The researchers showed that the mTOR pathway correlates with brain improvements observed in their mice and suggest that future studies might test whether the pathway is necessary to mediate such improvements.

"If mTOR signaling is necessary for the improvements, it might become an alternative target for combination therapy," Jankowsky said. "We hope that our findings will be valuable in discussions about future human clinical trials."
-end-
Other contributors to this work include Stephanie W. Fowler, Ricky R. Savjani, Susan G. Hilsenbeck, Clare E. Wallace, John R. Cirrito and Pritam Das. The authors are associated with one of the following institutions: Baylor College of Medicine, Texas A&M Health Science Center, Washington University and Mayo Clinic Florida.

This work was supported by the National Institutes of Health grant R01 NS092515, a gift from the Robert A. and Rene E. Belfer Family Foundation, NIH Biology of Aging training grant T32 AG000183 and by a Gates Millennium Scholarship. The Monoclonal Antibody/Recombinant Protein Expression Shared Resource at Baylor College of Medicine was funded by NIH Cancer Center Support Grant P30 CA125123.

Baylor College of Medicine

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.