Nav: Home

AACR: How do melanoma cells survive drug treatment long enough to acquire drug resistance?

April 16, 2018

Cancer often picks up genetic changes that allow it to resist treatment. But this takes time. How do cancer cells undergoing drug treatment survive long enough to evolve? To answer this question, a study presented at the American Association for Cancer Research (AACR) Annual Meeting 2018 used real-time, single-cell imaging to make movies of live cancer cells responding to treatment with an anti-cancer drug. All cells stopped dividing in response to the drug, as expected. And then within 2-3 days, some cells restarted. By rewinding the tape of the cells that tolerated therapy - effectively, playing the movie in reverse - researchers examined how cells are able to evade drug action, long before they have acquired drug resistance mutations.

The study, led by Sabrina Spencer, PhD, investigator at the University of Colorado Cancer Center and assistant professor in the CU Boulder Department of Chemistry and Biochemistry, worked with melanoma cells harboring BRAF-V600E mutation. In many ways, these cells are an iconic example of cancer driven by a single, known mutation. Hyper-activation of the BRAF gene starts the cancer, and the FDA-approved BRAF-inhibitor dabrafenib stops it. That is, for 6-7 months, at which point BRAF-V600E melanoma tends to develop resistance to dabrafenib.

When melanomas hyper-activate BRAF, the gene turns on a pathway that drives proliferation, called the MAPK pathway. But hyper-activation of BRAF isn't the only way to hyper-activate proliferation. Sure enough, melanomas with the BRAF-V600E mutation that become resistant to dabrafenib can do so by reactivating Mek, a component of the MAPK pathway. (The FDA recently approved combination treatment in BRAF+ melanoma, using dabrafenib against BRAF and trametinib against MEK to delay this escape.)

But, again, melanoma needs time to acquire mutations that reactive the MAPK pathway or, for that matter, any other genetic escape route. Dabrafenib should eliminate melanoma cells before they can evolve this escape. But some cells survive.

"What we're looking at here is the immediate response of melanoma cells to BRAF inhibitor treatment, in real time, over the first few days of treatment. Not genetic changes, but the mechanisms the cell uses to evade treatment and start dividing again in a matter of a few days," Spencer says.

She watches this evasion with a new technique known as single-cell time-lapse microscopy and MATLAB-based automated cell tracking, which is, very basically, a way to keep a microscope pointed at a single cell and stitch its actions into a time-lapse movie (although Spencer suggests the actual technique may be bit more complicated than that).

Before treatment with the drug, cells were replicating on a cycle of about 14 hours. When Spencer and her PhD student Chen Yang introduced dabrafenib, the cells stopped replicating, entering a kind of suspended animation known as quiescence. Then about 72 hours later some cells woke from quiescence and started replicating again. At any point during the course of the following week, about 10 percent of these treated cells continued to actively replicate.

"In other words, ten percent of these cells had somehow tolerated this treatment that should have kept them in check," Spencer says.

Analysis showed that these cells that tolerated dabrafenib had somehow reactivated the MAPK signaling pathway within 2-3 days.

"Our next question is what could be causing this MAPK reactivation," Spencer says. One candidate was, of course, MEK. And when Spencer performed the same experiment with the combination of dabrafenib and the MEK inhibitor trametinib, no cells escaped to continue replicating.

"What we find is that dabrafenib, even at high doses, does not fully turn off the MAPK pathway, thereby enabling eventual escape from drug," Spencer says.

Again, a major question in BRAF-V600E melanoma has been how it tolerates dabrafenib long enough to acquire mutations that enable drug resistance. The answer, at least in part, may be that even within three days of treatment, melanoma cells find a way to activate MEK - not with mutations, but with a more flexible and temporary way to allow these cancer cells to signal through the MAPK pathway even in the presence of BRAF inhibition.
-end-


University of Colorado Anschutz Medical Campus

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Anticancer: A New Way of Life
by David Servan-Schreiber MD PhD (Author)

The Truth about Cancer: What You Need to Know about Cancer's History, Treatment, and Prevention
by Ty M Bollinger (Author)

The Cancer-Fighting Kitchen, Second Edition: Nourishing, Big-Flavor Recipes for Cancer Treatment and Recovery
by Rebecca Katz (Author), Mat Edelson (Author)

The Cancer Revolution: A Groundbreaking Program to Reverse and Prevent Cancer
by Leigh Erin Connealy (Author)

F*ck Cancer: A totally inappropriate self-affirming adult coloring book (Totally Inappropriate Series) (Volume 4)
by Jen Meyers (Author)

Outside the Box Cancer Therapies: Alternative Therapies That Treat and Prevent Cancer
by Dr. Mark Stengler (Author), Dr. Paul Anderson (Author)

Cancer: 50 Essential Things to Do: 2013 Edition
by Greg Anderson (Author)

The Metabolic Approach to Cancer: Integrating Deep Nutrition, the Ketogenic Diet, and Nontoxic Bio-Individualized Therapies
by Dr. Nasha Winters ND FABNO L.Ac Dipl.OM (Author), Jess Higgins Kelley MNT (Author), Kelly Turner (Foreword)

Radical Remission: Surviving Cancer Against All Odds
by Kelly A. Turner PhD (Author)

Cancer Hacks: A Holistic Guide to Overcoming your Fears and Healing Cancer
by Elissa Goodman (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...