Man-made antibodies show promise in attacking cancer cells in animal models

April 16, 2018

DURHAM, N.C. -- Using chemotherapy along with aptamers - lab-made molecules that function like antibodies -- Duke Health researchers showed that they can zero in on and kill prostate cancer tumors in mice while leaving healthy tissue unscathed.

The finding suggests that aptamers could form the basis of new cancer therapies if additional studies in animals and humans bear out.

"The benefit of aptamers compared to antibodies is that we have more control over where they go and what they do," said senior author Bruce Sullenger, Ph.D., professor in the departments of Surgery and Pharmacology and Cancer Biology at Duke. "In our study, we also developed an antidote that shuts down the aptamer almost immediately, and this is an advantage if, for whatever reason, there might be an adverse reaction."

Sullenger and colleagues -- including lead author Bethany Powell Gray, Ph.D., and co-author Linsley Kelly, Ph.D. -- published their findings online during the week of April 16 in the journal Proceedings of the National Academy of Sciences.

Man-made aptamers can be created to target cancer cells, much like the body's naturally generated antibodies home in on pathogens such as viruses or bacteria. Recent drug advances have used antibodies in conjunction with chemotherapy to create immunotherapies that successfully fight cancer.

But inflammation and other side effects are common in these drug combinations, because it's difficult to control where and how strongly the antibodies trigger immune responses outside of the cancer cells.

"A need exists for new tumor-targeting therapies that are easier to manipulate and synthesize," Kelly said.

Aptamers are increasingly being studied as good alternatives. They are created using single RNA or DNA strands, which have the same targeting potential as antibodies, but appear to be nontoxic.

In their study on prostate cancer cells, the Duke team focused on an RNA ligand called E3, which selectively targets prostate cancer cells. They combined the E3 aptamer with a small dose of a highly toxic chemotherapy agent. Then they injected the aptamer/drug combination in mice that harbor human prostate cancer tumors.

Mice with prostate cancer tumors receiving the investigational treatment lived up to 74 days, compared to 46 days for mice that did not receive the treatment.

Additionally, the researchers developed an antidote to block toxicity from the E3 aptamer-drug conjugate, providing a safety switch in the unexpected event of normal cells being killed.

"That was one of the really exciting things from this work," Powell Gray said. "Because they are single strands of RNA, they can be reversed by using a complimentary portion of RNA that will bind and make a double strand to unfold the aptamer."

The researchers said studies will continue in animals and be tested in other types of cancer.

"This study demonstrates that E3 RNA selectively internalizes into prostate cancer cells and that E3-highly toxic drug conjugates are potent anti-tumor agents, representing a potential new therapeutic approach," Sullenger said.
-end-
In addition to Sullenger, Powell Gray and Kelly, study authors include Douglas Ahrens, Ashley Barry, Christina Kratschmer and Matthew Levy.

The research received funding support from the Department of Defense Prostate Cancer Research Program Post-Doctoral Training Award (PC131874) and Synergistic Idea Award (PC111812P2/W81XWH-12-1-0262), Stand Up to Cancer Innovative Research Grant (SU2C-AACR-IRG-0809) and National Cancer Institute grants (R21CA182330 and R21CA157366-03).

Duke University Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.