Reversing brain injury in newborns and adults

April 16, 2018

Children and adults diagnosed with brain conditions such as cerebral palsy, multiple sclerosis and dementia may be one step closer to obtaining new treatments that could help to restore normal function.

Researchers at OHSU in Portland, Oregon, have identified a new molecule within the brain's white matter that blocks the organ's ability to repair itself following injury.

"By preventing the production of this molecule, we can create an effective pathway to allow the brain to continue its regenerative process. This may help to limit long-term physical and mental disability associated with devastating neurological conditions," said Stephen Back, M.D., Ph.D., Clyde and Elda Munson Professor of Pediatric Research and Pediatrics, OHSU School of Medicine, OHSU Doernbecher Children's Hospital.

The results of the study published today in the Journal of Clinical Investigation.

Discovering the 'bad actor'

Hyaluronic acid, one of the largest molecules in the human body, fills spaces between cells, lubricates joints and accumulates in lesions -- or abnormalities -- within the brain's white matter. This build-up is known to halt the brain's repair process, also called myelination, causing dramatic disruption to overall brain function.

To better understand the repair roadblocks created by hyaluronic acid, Back and colleagues showed that while brain lesions break down these large molecules into a broad range of sizes, only one specific-sized fragment will selectively block the development of brain cells needed to promote repair.

By tracing the molecular pathway that prevented brain repair, the researchers discovered that the specialized fragment also activated a protein called FoxO3, which blocked key genes that turn on the repair process. Remarkably, this road block did not allow other strong repair signals to detour around it.

"We've identified a molecule that plays the role of the 'bad actor.' In essence, it hijacked the molecular machinery of the immune system and repurposed it to shut down brain repair after injury," said Back. "And, while this new molecule may not be easily detected in the brain, FoxO3 may serve as a viable biomarker for identifying its detrimental effects in the white matter, creating an opportunity for further research and targeted therapies to fully reverse the impacts of brain injury for people of all ages."

What's next?

"For many years, researchers and clinicians alike have struggled to understand and effectively treat the significant physical disabilities associated with white matter injury," said study co-author Larry Sherman, Ph.D., professor, Division of Neuroscience, Oregon National Primate Research Center; and professor of cell, developmental and cancer biology, OHSU School of Medicine. "This discovery means that we now have the potential to start looking at multiple ways of intervening to promote brain repair that weren't available to use before."

One promising direction is the development of new pharmaceuticals that can prevent the generation of hyaluronic acid fragments. Additionally, says Back, new understanding of the brain's pathway to repair may provide health care professionals with new insights that will positively impact therapies such as stem cell transplantation.
-end-
This study was conducted in collaboration with University of Nebraska-Lincoln, the University of Oklahoma Health Sciences Center and the Oregon National Primate Research Center at OHSU. Taasin Srivastava, Ph.D., a post-doctoral researcher in the OHSU School of Medicine is the study's lead author.

Oregon Health & Science University

Related Brain Injury Articles from Brightsurf:

Using machine learning to predict pediatric brain injury
When newborn babies or children with heart or lung distress are struggling to survive, doctors often turn to a form of life support that uses artificial lungs.

A memory game could help us understand brain injury
A Boston University team created a memory game for mice in order to examine the function of two different brain areas that process information about the sensation of touch and the memory of previous events.

Clear signs of brain injury with severe COVID-19
Certain patients who receive hospital care for coronavirus infection (COVID-19) exhibit clinical and neurochemical signs of brain injury, a University of Gothenburg study shows.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Can brain injury from boxing, MMA be measured?
For boxers and mixed martial arts (MMA) fighters, is there a safe level of exposure to head trauma?

Study: Brain injury common in domestic violence
Domestic violence survivors commonly suffer repeated blows to the head and strangulation, trauma that has lasting effects that should be widely recognized by advocates, health care providers, law enforcement and others who are in a position to help, according to the authors of a new study.

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.

Every cell has a story to tell in brain injury
Traumatic head injury can have widespread effects in the brain, but now scientists can look in real time at how head injury affects thousands of individual cells and genes simultaneously in mice.

Traumatic brain injury recovery via petri dish
Researchers in the University of Georgia's Regenerative Bioscience Center have succeeded in reproducing the effects of traumatic brain injury and stimulating recovery in neuron cells grown in a petri dish.

Read More: Brain Injury News and Brain Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.