Nav: Home

Corals in the Red Sea offer long-term view of the south Asian summer monsoon

April 16, 2019

When it comes to understanding future climate, the south Asian summer monsoon offers a paradox. Most climate models predict that as human-caused global warming increases, monsoon rain and wind will become more intense--but weather data collected in the region shows that rainfall has actually declined over the past 50 years.

A new study from Woods Hole Oceanographic Institution (WHOI) may help explain this discrepancy. Using chemical data from corals in the Red Sea, scientists reconstructed nearly three centuries of wind data that provided a definitive, natural record of the monsoon's intensity. The finding, published online March 28 in the journal Geophysical Research Letters, show that monsoon winds have indeed increased over the past centuries.

"The south Asian monsoon is incredibly important," said Konrad Hughen, a paleoclimatologist at WHOI and co-author on the paper. "It's one of the biggest climate systems on the planet, and supplies water for almost a billion people--yet we don't fully understand its long-term behavior. It's a very complicated system with lots of moving parts."

The problem, he added, is that historic records of rainfall are based on limited points in space with high variability, and calculating averages across a broad region is difficult. Researchers have not yet had a way to verify those records, and have limited information about weather patterns before instrumental records began.

Hughen and his colleagues were able to uncover that information thanks to the behavior of the monsoon winds themselves. One branch of the monsoon moves predominantly west to east, crossing the Sahara desert in northeast Africa, where it picks up fine dust and clay in the process. Its winds are then funneled through the Tokar Gap, a narrow mountain pass in eastern Sudan, where the dust they contain spills out into the Red Sea.

The dust picked up in the Sahara contains a form of barium that dissolves easily in seawater. Each year, corals in the Red Sea incorporate part of that barium into their skeletons as they grow, trapping within them a record of how much wind and dust blew through the gap during summer monsoons for hundreds of years.

"The barium gives us a proxy for wind," said Hughen. "The more barium we found in a layer of coral, the more wind was coming though the Tokar Gap during the year it formed. Based on those winds, we can calculate the location of the low pressure systems that caused them, and we found they were primarily over the Indian subcontinent. That confirmed the winds' connection to the monsoon"

The data in the corals seems to prove that historic records of rainfall may be missing a broader picture, Hughen said. Stronger winds would have increased moisture traveling over the Indian subcontinent, despite records showing rainfall dropping off.

"It could be that those records simply missed some of the rainfall, especially in the past when they were less reliable" he said. "Rain is highly variable from one place to another. Sometimes it's pouring just a few miles from an area that's not as wet. When you're recording rainfall at only a few fixed points, you might not be able to capture those sorts of spatial variations."

The coral records show that the strength of the monsoon is in fact increasing with time--a trend that's in keeping with existing climate models--but its variability from decade to decade is diminishing. This suggests that as the climate has warmed, monsoon circulation has become more stable, so extra-heavy winds and rains could be the "new normal" for future years rather than just an anomaly.
-end-
Also collaborating on the study were lead author Sean P. Bryan of Colorado State University and formerly a postdoctoral researcher at WHOI, J. Thomas Farrar of WHOI, and Kristopher B. Karnauskas of the University of Colorado, Boulder.

This research was supported by grants to Hughen from NSF award #OCE-1031288 and KAUST award #USA00002, as well as a WHOI Postdoctoral Fellowship awarded to Sean P. Bryan. All data from the study will be made publicly available online through the NOAA NCDC Paleoclimatology data archive.

The Woods Hole Oceanographic Institution is a private, non-profit organization on Cape Cod, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans' role in the changing global environment. For more information, please visit http://www.whoi.edu.

Woods Hole Oceanographic Institution

Related Rainfall Articles:

NASA looks at rainfall from Tropical Storm Dora
Now a tropical storm, Hurricane Dora has been skirting southwestern Mexico's coast since it formed and has transported tropical moisture onshore that has produced some heavy rain showers.
NASA adds up Tropical Storm Cindy's rainfall
Tropical storm Cindy was downgraded to a tropical depression after moving onshore near the Texas and Louisiana Border on Thursday June 22, 2017 and bringing a lot of rain with it.
Bangladesh's heavy rainfall examined with NASA's IMERG
At least 156 people in Bangladesh were killed during the past week by landslides and floods caused by heavy rainfall.
NASA looks at extreme Florida rainfall by satellite
Extremely heavy rain has recently fallen over Florida and the Global Precipitation Measurement or GPM mission core satellite looked at that some of that rainfall on June 7.
Summer rainfall in vulnerable African region can be predicted
Summer rainfall in one of the world's most drought-prone regions can now be predicted months or years in advance, climate scientists at the Met Office and the University of Exeter say.
NASA adds up record Australia rainfall
Over the week of May 15, extreme rainfall drenched northeastern Australia and NASA data provided a look at the record totals.
Varied increases in extreme rainfall with global warming
A new study by researchers from MIT and the Swiss Federal Institute of Technology in Zurich shows that the most extreme rain events in most regions of the world will increase in intensity by 3 to 15 percent, depending on region, for every degree Celsius that the planet warms.
NASA examines Peru's deadly rainfall
The Global Precipitation Measurement mission or GPM constellation of satellites provide data on precipitation rates and totals.
NASA examines Ex-Tropical Cyclone Dineo's rainfall
NASA examined the heavy rainfall generated by Tropical Cyclone Dineo as it made landfall in Mozambique and NASA's Terra satellite spotted the storm's remnants over four countries.
NASA observes extreme rainfall over Southern California
NASA calculated California's rainfall over seven days using a constellation of satellites and created a map to provide the visual extent of the large rainfall totals.

Related Rainfall Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...