Nav: Home

How inland waters 'breathe' carbon -- and what it means for global systems

April 16, 2019

For a long time, scientists evaluating the global carbon cycle considered rivers and streams akin to pipes, channeling carbon and other solutes from the land to the sea. Today, however, scientists know that along the way these inland waters also "breathe" carbon and other gases into the atmosphere.

In fact, the critical role of this greenhouse gas "evasion" from rivers and streams was, for the first time, incorporated into the Fifth Assessment Report of the UN's Intergovernmental Panel on Climate Change in 2014.

Yet much remains unknown about how much gas is actually released from these water systems and the chemical and ecological dynamics that affect their transport.

A new Yale study reveals important insights into the factors that influence the release of greenhouse gases from these inland waters, including a key relationship between storm events, ecology, and topography in moderating this release.

In an analysis of headwater streams in central Connecticut, scientists found that concentrations of three greenhouse gases -- carbon dioxide, nitrous oxide, and methane -- increased in wetland streams during rainstorms, but decreased or remained constant in forested streams. However, those gases were also less likely to be released from the wetland streams than from the streams in forested areas, they found.

Writing in the Journal of Geophysical Research: Biogeosciences, they conclude that these variances are likely due to the fact that forested streams tend to be steeper, creating greater turbulence that, in turn, promotes gas releases. Meanwhile, in wetland streams those inputs were more likely to be carried downstream farther from their source, said Kelly Aho, a doctoral candidate at the Yale School of Forestry & Environmental Studies (F&ES) and lead author of the study.

"When you think about what a wetland looks like, it makes sense: wetlands are really flat, which is why water and organic matter may accumulate there," Aho said. "As a result, during a rainstorm those wetlands and their soils are a source of greenhouse gases."

"But," she added, "gas concentrations represent only half the equation."

The release of gases from rivers and streams also depends on the gas transfer velocity, or the rate at which gases move across the air-water boundary. A lack of turbulence tends to produce a lower gas transfer velocity and slower rates. So while greenhouse gas concentrations in wetland streams will increase suddenly during a rainstorm, those gases are more likely to remain trapped in the flatter, less turbulent streams until they encounter steeper terrain farther downstream.

Understanding these dynamics, Aho said, will be critical in order to develop more accurate carbon cycle projections and climate models -- particularly as extreme weather events are projected to increase in the coming decades.

"If a researcher is looking at carbon sequestration from a local perspective, they might be just monitoring what goes in and out vertically within a plot of land," she said. "But if that area includes a wetland stream, for instance, the gases are likely to flow away from the plot they're looking at; the carbon may be released into the atmosphere outside of their point of view, so you may totally miss it. So it's important to think about this idea of lateral transport.

"That's why streams and rivers are so interesting," she added. "They're moving solutes across the landscape, so we have to take that into account."
This study was made available online in January ahead of final publication in print in March.

The paper was co-authored by Peter Raymond, a professor of ecosystem ecology at F&ES.

The Journal of Geophysical Research: Biogeosciences is a publication of the American Geophysical Union.

Yale School of Forestry & Environmental Studies

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...