Nav: Home

Untwisting plastics for charging internet-of-things devices

April 16, 2020

Untwisting chains of atoms within a plastic polymer improves its ability to conduct electricity, according to a report by researchers, led by Nagoya University applied physicist Hisaaki Tanaka, in the journal Science Advances. The insight could help accelerate the development of wearable power sources for a vast number of Internet-of-things devices.

The 'smart' societies of the future are expected to contain a large number of electronic devices that are interconnected through the Internet: the so-called Internet-of-things. Scientists have been looking for ways to use body heat to charge some types of micro-devices and sensors. But this requires lightweight, non-toxic, wearable, and flexible thermoelectric generators.

Plastics that can conduct electricity, called conducting polymers, could fill this bill, but their thermoelectric performance needs to be improved. Their thin films have highly disordered structures, formed of crystalline and non-crystalline parts, making it notoriously difficult to understand their properties and thus find ways to optimize their performance.

Tanaka worked with colleagues in Japan to understand the thermoelectric properties of a highly conductive thiophene-based polymer, called PBTTT. They added or 'doped' the polymer with a thin ion electrolyte gel, which is known to improve conductivity. The gel only infiltrates the polymer successfully when a specific electric voltage is applied.

They used a variety of measurement techniques to understand the polymer's electronic and structural changes when doped. They found that, without the electrolyte gel, the PBTTT chain is highly twisted. Doping it with a critical amount of electrolyte untwists the chain and creates links between its crystalline parts, improving electron conductivity.

The scientists report that the formation of this interconnected conductive network is what determines the polymer's maximum thermoelectric performance, which they were able to uniquely observe in this study.

They are now looking into ways to optimize the thermoelectric performance of thin film conducting polymers through material design and changing the fabrication conditions.
-end-
The article, "Thermoelectric properties of a semicrystalline polymer doped beyond the insulator-to-metal transition by electrolyte gating," was published in the journal Science Advances on February 14, 2020 at DOI: 10.1126/sciadv.aay8065.

This work was financially supported by Grant-in-Aid for Scientific Research (JP17H01069 and 19K22127) and a Grant-in-Aid for Scientific Research on Innovative Areas (JP26102012) from the Japan Society for the Promotion of Science (JSPS) and by JST CREST (JPMJCR17I5).

For more information, contact:

Prof. Taishi Takenobu
Graduate School of Engineering, Nagoya University
Email: takenobu@nagoya-u.jp

About Nagoya University, Japan

Nagoya University has a history of about 150 years, with its roots in a temporary medical school and hospital established in 1871, and was formally instituted as the last Imperial University of Japan in 1939. Although modest in size compared to the largest universities in Japan, Nagoya University has been pursuing excellence since its founding. Six of the 18 Japanese Nobel Prize-winners since 2000 did all or part of their Nobel Prize-winning work at Nagoya University: four in Physics - Toshihide Maskawa and Makoto Kobayashi in 2008, and Isamu Akasaki and Hiroshi Amano in 2014; and two in Chemistry - Ryoji Noyori in 2001 and Osamu Shimomura in 2008. In mathematics, Shigefumi Mori did his Fields Medal-winning work at the University. A number of other important discoveries have also been made at the University, including the Okazaki DNA Fragments by Reiji and Tsuneko Okazaki in the 1960s; and depletion forces by Sho Asakura and Fumio Oosawa in 1954.

Nagoya University

Related Polymer Articles:

Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.
Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.
New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.
Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.
Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.
New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.
New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.
New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.
Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.
New materials: Growing polymer pelts
Polymer pelts made of the finest of fibers are suitable for many different applications, from coatings that adhere well and are easy to remove to highly sensitive biological detectors.
More Polymer News and Polymer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.