Biorobotics is the future of fish farming

April 16, 2020

Several hundred thousand salmon swim closely together in fish farms. For at least some time, the fish farmer and the fish have the same goal: to keep the fish healthy, eating and growing. Therefore it is necessary to provide fish with environmental conditions, where the stress level is low, parasites do not pose a risk to their health and there is enough food. Stressed and sick fish do not eat or grow or bring profit to the fish farmer.

The Head of TalTech Centre for Biorobotics, Professor Maarja Kruusmaa says, "In order to effectively observe fish in their natural state, a technology is needed, which would enable reaching each nook of the fish farm, where e.g. frightened specimens might be hiding. It must be observed whether the feed reaches all the fish or only the more aggressive alpha specimens, whether the fish have parasites or any other health problems, etc."

The behaviour of fish in a fish cage is traditionally investigated by using human divers or underwater robots. Divers' work is expensive and, most importantly, fish are afraid of the invader and therefore by diving it is not possible to observe fish in their natural state. The same problem applies to use of big underwater robots.

Therefore, researchers from Tallinn University of Technology, Estonian University of Life Sciences and Norwegian University of Science and Technology, in collaboration with the research organization SINTEF and one of the world's largest fish farm companies SalMar, conducted experiments to find out what kind of inspection robots should be used for observing fish in their natural state. The behavior of fish in the presence of a diver and different robots was analyzed and compared to identify what features are important in the development of robots for more efficient monitoring of animals.

The results of the experiments showed that fish behave very calmly and naturally in the presence of the small and slowly moving robot turtle U-CAT invented by TalTech biorobotics researchers. A conventional commercial underwater robot scares fish off and forces them to flee rapidly and a diver does not get close enough to the fish at all to observe them underwater, while U-CAT is able to get closest to the fish in the fish farm and provide valuable insight of their state. The study provided other useful cues for the development of robots intended for observing animals, such as what colour should the robot be or how should it move.

Professor Maarja Kruusmaa says, "Robot-human interactions have been investigated for decades, but animal-robot interactions and communication is almost unexplored. However, these studies are of considerable importance: they would inspire advances in environmental monitoring and agriculture automation, and would help to build robots facilitating wildlife research."

Fish farming has a larger market share compared to wild fishing worldwide and the share is increasing steadily, constituting currently an industry with the turnover of over 3 billion dollars.
The findings of the study were published in the journal Royal Society Open Science in the article entitled "Salmon behavioural response to robots in an aquaculture sea cage" on 11.03.2020.

Additional information: Head of TalTech Centre for Biorobotics, Professor Maarja Kruusmaa,

Kersti Vähi, TalTech Research Administration Office

Estonian Research Council

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to