Duke scientists deconstruct process of bacterial division

April 17, 2008

DURHAM, N.C. -- Duke University researchers have made a major advance in understanding how bacteria divide. This could lead to new antibiotic treatments that prevent dangerous bacteria from multiplying.

Normally, bacteria divide by forming a ring that pinches the cell in two. The ring is called a "Z ring" after the protein FtsZ, which forms a ring-shaped scaffold and then squeezes it smaller. In bacteria, the Z ring also contains a dozen other proteins, all believed to be essential for division.

The Z ring normally pulls in on the cell membrane by binding to another protein, FtsA, which has one end attached to the inner cell membrane and the other end connected to FtsZ. When the Z ring constricts, it completely pulls in the membrane and nips the bacterium in two.

But cell biology research scientist Masaki Osawa, Ph.D., cut FtsA out of the system by making an FtsZ that could bind directly to the membrane, and called it "membrane targeted FtsZ" or FtsZ-mts.

First, Osawa demonstrated that the new protein, FtsZ-mts, assembled Z rings in bacteria.

Then he constructed a greatly simplified cell-division machine in microscopic oil droplets, called liposomes, that demonstrated the important role of FtsZ in the division process. He was able to assemble Z rings in this completely artificial system, the liposome, a tiny hollow sphere of fat that mimics natural cell membranes.

To do this, Osawa mixed the liposomes with FtsZ and GTP, a molecule that provides energy. On a microscope slide the liposomes fused and stretched into tubes that mimicked the shape of E. coli and other rod-shaped bacteria.

"It was a happy coincidence that the size and shape of the liposomes was similar to that of rod-shaped bacteria," says co-author Harold Erickson, professor of cell biology. "These tubular liposomes are a new micro-structure, and their formation is still a mystery."

During the experiment, fluorescently labeled FtsZ-mts was initially on the outside of the liposomes, but some of the tubular liposomes ended up with FtsZ on the inside. "We don't know how this happens, but it is a key to the discovery," Osawa said.

Inside the liposome the FtsZ formed multiple closed rings that aligned perpendicular to the length of the tube, just as Z rings form in bacteria. They also slid back and forth, and where they collided, they stayed together and formed brighter Z rings. And as the Z rings grew in brightness, they visibly pulled the wall of the liposome inward.

"The Z rings are clearly generating force and causing the constriction," Osawa said. A movie the team made shows several constrictions in the wall occurring at the sites of the bright Z rings. When the GTP in the liposome is used up, the tube eases out of its constrictions into its original shape.

"We believe our simple system may recreate the mechanism that the earliest bacteria used to divide. They probably had FtsZ alone," Erickson said. "Osawa's experiments show that FtsZ, a membrane tether, and the inside surface of a tubular membrane are all that's needed to assemble the Z ring and generate a constriction force."

The artificial Z rings were not sufficient to pinch the liposomes in half, "probably because their walls are much thicker than the membrane of a bacterium," Osawa noted. "We are now working to make thinner liposomes, so that we can achieve complete division."

Erickson said that FtsZ is the bacterial ancestor of tubulin, the protein that makes the microtubules in animal cells and is the target of a number of anti-cancer drugs like taxol. Although FtsZ is not sensitive to taxol, anything learned about the bacterial ancestor will help us understand microtubules, which help animal cells to keep their shape and control their movements, he explained.
-end-
NOTE: Movies of the constriction and release of the Z rings in liposomes are available - please contact mary.gore@duke.edu or 919-660-1309.

Duke University Medical Center

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.