Tiny tremors can track extreme storms in a warming planet

April 17, 2008

SANTA FE, New Mexico--Data from faint earth tremors caused by wind-driven ocean waves--often dismissed as "background noise" at seismographic stations around the world--suggest extreme ocean storms have become more frequent over the past three decades, according to research presented at the annual meeting of the Seismological Society of America.

The International Panel on Climate Change (IPCC) and other prominent researchers have predicted that stronger and more frequent storms may occur as a result of global warming trends. The tiny tremors, or microseisms, offer a new way to discover whether these predictions are already coming true, said Richard Aster, a geophysics professor at the New Mexico Institute of Mining and Technology.

Unceasing as the ocean waves that trigger them, the microseisms show up as five- to 30-second oscillations of Earth's surface at seismographic stations around the world. Even seismic monitoring stations "in the middle of a continent are sensitive to the waves crashing all around the continent," Aster said.

As storm winds drive ocean waves higher, the microseism signals increase their amplitude as well, offering a unique way to track storm intensities across seasons, over time, and at different geographical locations. For instance, Aster and colleagues Daniel McNamara from the U.S. Geological Survey and Peter Bromirski of the Scripps Institution of Oceanography recently published analysis in the Seismological Society of America journal Seismological Research Letters showing that microseism data collected around the Pacific Basin and throughout the world could be used to detect and quantify wave activity from multi-year events such as the El Niño and La Niña ocean disruptions.

The findings spurred them to look for a microseism signal that would reveal whether extreme storms were becoming more common in a warming world. In fact, they saw "a remarkable thing," among the worldwide microseism data collected from 1972 to 2008, Aster recalled. In 22 of the 22 stations included in the study, the number of extreme storm events had increased over time, they found.

While the work on evaluating changes in extreme storms is "still very much in its early stages", Aster is "hoping that the study will offer a much more global look" at the effects of climate change on extreme storms and the wind-driven waves that they produce. At the moment, most of the evidence linking the two comes from studies of hurricane intensity and shoreline erosion in specific regions such as the Pacific Northwest Gulf of Mexico, he noted.

The researchers are also working on recovering and digitizing older microseism records, potentially creating a data set that stretches back to the 1930s. Aster praised the work of the long-term observatories that have collected the records, calling them a good example of the "Cinderella science"--unloved and overlooked--that often support significant discoveries.

"It's absolutely great data on the state of the planet. We took a prosaic time series, and found something very interesting in it," he said.
-end-
Presentation: "Microseism-Based Climate Monitoring" in the session: Models, Methods, and Measurements: Seismic Monitoring Research. 8:30 - Noon (Mountain), April 17, 2008.

Aster, R. New Mexico Institute of Mining and Technology; McNamara, D., U.S. Geological Survey in Golden, CO; Bromirski, P., Scripps Institution of Oceanography; and Gee, L., and Hutt, C.R., U.S. Geological Survey in Albuquerque, NM.

Seismological Society of America

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.