Nav: Home

Mission Control for the body's salt and water supplies

April 17, 2017

We've all heard it: eating salty foods makes you thirstier. But what sounds like good nutritional advice turns out to be an old-wives' tale. In a study carried out during a simulated mission to Mars, an international group of scientists has found exactly the opposite to be true. "Cosmonauts" who ate more salt retained more water, weren't as thirsty, and needed more energy.

For some reason, no one had ever carried out a long-term study to determine the relationship between the amount of salt in a person's diet and his drinking habits. Scientists have known that increasing a person's salt intake stimulates the production of more urine - it has simply been assumed that the extra fluid comes from drinking. Not so fast! say researchers from the German Aerospace Center (DLR), the Max Delbrück Center for Molecular Medicine (MDC), Vanderbilt University and colleagues around the world. Recently they took advantage of a simulated mission to Mars to put the old adage to the test. Their conclusions appear in two papers in the current issue of The Journal of Clinical Investigation.

What does salt have to do with Mars? Nothing, really, except that on a long space voyage conserving every drop of water might be crucial. A connection between salt intake and drinking could affect your calculations - you wouldn't want an interplanetary traveler to die because he liked an occasional pinch of salt on his food. The real interest in the simulation, however, was that it provided an environment in which every aspect of a person's nutrition, water consumption, and salt intake could be controlled and measured.

The studies were carried out by Natalia Rakova (MD, PhD) of the Charité and MDC and her colleagues. The subjects were two groups of 10 male volunteers sealed into a mock spaceship for two simulated flights to Mars. The first group was examined for 105 days; the second over 205 days. They had identical diets except that over periods lasting several weeks, they were given three different levels of salt in their food.

The results confirmed that eating more salt led to a higher salt content in urine - no surprise there. Nor was there any surprise in a correlation between amounts of salt and overall quantity of urine. But the increase wasn't due to more drinking - in fact, a salty diet caused the subjects to drink less. Salt was triggering a mechanism to conserve water in the kidneys.

Before the study, the prevailing hypothesis had been that the charged sodium and chloride ions in salt grabbed onto water molecules and dragged them into the urine. The new results showed something different: salt stayed in the urine, while water moved back into the kidney and body. This was completely puzzling to Prof. Jens Titze, MD of the University of Erlangen and Vanderbilt University Medical Center and his colleagues. "What alternative driving force could make water move back?" Titze asked.

Experiments in mice hinted that urea might be involved. This substance is formed in muscles and the liver as a way of shedding nitrogen. In mice, urea was accumulating in the kidney, where it counteracts the water-drawing force of sodium and chloride. But synthesizing urea takes a lot of energy, which explains why mice on a high-salt diet were eating more. Higher salt didn't increase their thirst, but it did make them hungrier. Also the human "cosmonauts" receiving a salty diet complained about being hungry.

The project revises scientists' view of the function of urea in our bodies. "It's not solely a waste product, as has been assumed," Prof. Friedrich C. Luft, MD of the Charité and MDC says. "Instead, it turns out to be a very important osmolyte - a compound that binds to water and helps transport it. Its function is to keep water in when our bodies get rid of salt. Nature has apparently found a way to conserve water that would otherwise be carried away into the urine by salt."

The new findings change the way scientists have thought about the process by which the body achieves water homeostasis - maintaining a proper amount and balance. That must happen whether a body is being sent to Mars or not. "We now have to see this process as a concerted activity of the liver, muscle and kidney," says Jens Titze.

"While we didn't directly address blood pressure and other aspects of the cardiovascular system, it's also clear that their functions are tightly connected to water homeostasis and energy metabolism."
-end-
Note: This project is primarily a product of DLR research. At the MDC are Natalia Rakova, Dominik N. Müller and Friedrich C. Luft. Senior author is Jens Titze at Vanderbilt University where Friedrich C. Luft is an affiliated faculty member.

Natalia Rakova, Kento Kitada, et al. (2017): "Increased salt consumption induces body water conservation and decreases fluid intake." The Journal of Clinical Investigation. doi: 10.1172/JCI88530

Kento Kitada, Steffen Daub, et al. (2017): "High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation." The Journal of Clinical Investigation. doi: 10.1172/JCI88532

Max Delbrück Center for Molecular Medicine in the Helmholtz Association

Related Mars Articles:

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.
Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.
Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.
A material way to make Mars habitable
New research suggest that regions of the Martian surface could be made habitable with a material -- silica aerogel -- that mimics Earth's atmospheric greenhouse effect.
Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.
New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.
Why we won't get to Mars without teamwork
If humanity hopes to make it to Mars anytime soon, we need to understand not just technology, but the psychological dynamic of a small group of astronauts trapped in a confined space for months with no escape, according to a paper published in American Psychologist, the flagship journal of the American Psychological Association.
Mars: Not as dry as it seems
Two new Oxford University papers have shed light on why there is no life on Mars.
More evidence of water on Mars
River deposits exist across the surface of Mars and record a surface environment from over 3.5 billion years ago that was able to support liquid water at the surface.
How hard did it rain on Mars?
Heavy rain on Mars reshaped the planet's impact craters and carved out river-like channels in its surface billions of years ago, according to a new study published in Icarus.
More Mars News and Mars Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.