Landslides on Ceres reflect hidden ice

April 17, 2017

Massive landslides, similar to those found on Earth, are occurring on the asteroid Ceres. That's according to a new study led by the Georgia Institute of Technology, adding to the growing evidence that Ceres retains a significant amount of water ice.

The study is published in the journal Nature Geoscience. It used data from NASA's Dawn spacecraft to identify three different types of landslides, or flow features, on the Texas-sized asteroid.

Type I are relatively round, large and have thick "toes" at their ends. They look similar to rock glaciers and icy landslides in Earth's arctic. Type I landslides are mostly found at high latitudes, which is also where the most ice is thought to reside near Ceres' surface.

Type II features are the most common of Ceres' landslides and look similar to deposits left by avalanches on Earth. They are thinner and longer than Type I and found at mid-latitudes. The authors affectionately call one such Type II landslide "Bart" because of its resemblance to the elongated head of Bart Simpson from TV's "The Simpsons."

Ceres' Type III features appear to form when some of the ice is melted during impact events. These landslides at low latitudes are always found coming from large-impact craters.

Georgia Tech Assistant Professor and Dawn Science Team Associate Britney Schmidt led the study. She believes it provides more proof that the asteroid's shallow subsurface is a mixture of rock and ice.

"Landslides cover more area in the poles than at the equator, but most surface processes generally don't care about latitude," said Schmidt, a faculty member in the School of Earth and Atmospheric Sciences. "That's one reason why we think it's ice affecting the flow processes. There's no other good way to explain why the poles have huge, thick landslides; mid-latitudes have a mixture of sheeted and thick landslides; and low latitudes have just a few."

The study's researchers were surprised at just how many landslides Ceres has in general. About 20 percent to 30 percent of craters greater than 6 miles (10 kilometers) wide have some type of landslide associated with them. Such widespread features formed by "ground ice" processes, made possible because of a mixture of rock and ice, have only been observed before on Earth and Mars.

Based on the shape and distribution of landslides on Ceres, the authors estimate that the upper layers of Ceres may range from 10 percent to 50 percent ice by volume.

"These landslides offer us the opportunity to understand what's happening in the upper few kilometers of Ceres," said Georgia Tech Ph.D. student Heather Chilton, a co-author on the paper. "That's a sweet spot between information about the upper meter or so provided by the GRaND (Gamma Ray and Neutron Detector (GRaND) and VIR (Visible and Infrared Spectrometer) instrument data, and the tens of kilometers-deep structure elucidated by crater studies."

"It's just kind of fun that we see features on this small planet that remind us of those on the big planets, like Earth and Mars," Schmidt said. "It seems more and more that Ceres is our innermost icy world."
-end-
The Dawn mission is managed by JPL for NASA's Science Mission Directorate in Washington, D.C. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit: http://dawn.jpl.nasa.gov/mission

Georgia Institute of Technology

Related Landslides Articles from Brightsurf:

Simple actions can help people survive landslides
Simple actions can dramatically improve a person's chances of surviving a landslide, according to records from 38 landslides in the US and around the world.

Landslides have long-term effects on tundra vegetation
Landslides have long-term effects on tundra vegetation, a new study shows.

Most landslides in western Oregon triggered by heavy rainfall, not big earthquakes
Deep-seated landslides in the central Oregon Coast Range are triggered mostly by rainfall, not by large offshore earthquakes.

FSU researcher detects unknown submarine landslides in Gulf of Mexico
A Florida State University researcher has used new detection methods to identify 85 previously unknown submarine landslides that occurred in the Gulf of Mexico between 2008 and 2015, leading to questions about the stability of oil rigs and other structures, such as pipelines built in the region.

Climate change could trigger more landslides in High Mountain Asia
More frequent and intense rainfall events due to climate change could cause more landslides in the High Mountain Asia region of China, Tibet and Nepal, according to the first quantitative study of the link between precipitation and landslides in the region.

Martian landslides not conclusive evidence of ice
Giant ridges on the surface of landslides on Mars could have formed without ice, challenging their use by some as unequivocal evidence of past ice on the red planet, finds a new UCL-led study using state-of-the-art satellite data.

Ground failure study shows deep landslides not reactivated by 2018 Anchorage Quake
Major landslides triggered by the 1964 magnitude 9.2 Great Alaska earthquake responded to, but were not reactivated by, the magnitude 7.1 Anchorage earthquake that took place 30 November 2018, researchers concluded in a new study published in Seismological Research Letters.

Rice irrigation worsened landslides in deadliest earthquake of 2018 finds NTU study
Irrigation significantly exacerbated the earthquake-triggered landslides in Palu, on the Indonesian island of Sulawesi, in 2018, according to an international study led by Nanyang Technological University, Singapore (NTU Singapore) scientists.

Precursors of a catastrophic collapse
The flanks of many island volcanoes slide very slowly towards the sea.

Quick reconnaissance after 2018 Anchorage quake reveals signs of ground failure
A day after the Nov. 30, 2018, magnitude 7 earthquake in Anchorage, Alaska, US Geological Survey scientists Robert Witter and Adrian Bender had taken to the skies.

Read More: Landslides News and Landslides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.