Nav: Home

Mechanism behind the electric charges generated by photosynthesis

April 17, 2017

Photosynthesis requires a mechanism to produce large amounts of chemical energy without losing the oxidative power needed to break down water. A Japanese research team has clarified part of this mechanism, marking another step towards the potential development of artificial photosynthesis. The findings were published on February 27 in the online edition of The Journal of Physical Chemistry Letters.

The team was led by Professor KOBORI Yasuhiro (Kobe University Molecular Photoscience Research Center) and PhD student HASEGAWA Masashi (Graduate School of Science) with Associate Professor MINO Hiroyuki (Nagoya University Graduate School of Science).

During the water-splitting reaction in photosynthesis, plants produce oxygen by converting solar energy into chemical energy, providing the energy source necessary for their survival. This reaction is carried out by a protein complex in chloroplasts (located in leaves) called the photosystem II complex (see figure 1).

In 2015 Professor Kobori's research team succeeded in analyzing the electronic interactions and 3-dimensional placement of the initial charge separation produced directly after photoreaction in the photosynthetic reaction center of purple bacteria, which do not cause the oxidation potential for water-splitting. However, in the photosystem II complex for higher plants, the configuration of the initial charge separation state was unclear, and it was a mystery as to how it led to an effective water-splitting reaction while retaining the high oxidative power.

The scientists extracted thylakoid membranes (where the photoreaction takes place in photosynthesis) from spinach, added a reducing agent, and irradiated the samples. This enabled them to detect microwave signals from the initial charge separation state to a degree of accuracy of a 10 millionth of a second (see figure 3a). They developed a method of analyzing the microwave signals using spin polarization imaging. For the first time it was possible to carry out 3D view analysis of the configuration of the electric charge produced directly after exposure to light as a reactive intermediate. This was done with an accuracy to within 10 millionth of a second, as consecutive photography (see figure 3b). Based on this visualization, they also quantified the electronic interaction that occurs when electron orbits overlap for molecules with electric charges (figure 3c).

The initial electric charge separation structure clarified by this analysis was not very different from the structure before the reaction, but the imaging analysis showed that the positive electric charge that occurred in the pigment as a reactive intermediate existed disproportionately in chlorophyll single molecules (figure 3b, c). It suggests that there is strong stabilization caused by electrostatic interaction between the charges.

It has been revealed that the return of the negative charge is suppressed, since the overlap between electron orbits is greatly limited by the insulating effect of the vinyl group terminus. This means that it becomes possible to use the high oxidizing powers of the positive charge in chlorophyll (PD1) for the subsequent oxidative decomposition of water.

Based on these findings, researchers have unlocked part of the mechanism to effectively produce high amounts of chemical energy without loss of the oxidative power needed to split water in photosynthesis. These findings could help to design an "artificial photosynthesis system" that can provide a clean energy source by efficiently converting solar energy into large amounts of electricity and hydrogen. The application of this principle could contribute to solving issues with energy, the environment and food shortages.

Kobe University

Related Photosynthesis Articles:

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.
Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
Algal library lends insights into genes for photosynthesis
To identify genes involved in photosynthesis, researchers built a library containing thousands of single-celled algae, each with a different gene mutation.
New molecular blueprint advances our understanding of photosynthesis
Researchers at Lawrence Berkeley National Laboratory have used one of the most advanced microscopes in the world to reveal the structure of a large protein complex crucial to photosynthesis, the process by which plants convert sunlight into cellular energy.
How bacteria build hyper-efficient photosynthesis machines
Researchers facing a future with a larger population and more uncertain climate are looking for ways to improve crop yields, and they're looking to photosynthetic bacteria for engineering solutions.
Structure and function of photosynthesis protein explained in detail
An international team of researchers has solved the structure and elucidated the function of photosynthetic complex I.
Photosynthesis like a moss
Moss evolved after algae but before vascular land plants, such as ferns and trees, making them an interesting target for scientists studying photosynthesis, the process by which plants convert sunlight to fuel.
'Turbocharging' photosynthesis in corn hikes yield
Scientists from the Boyce Thompson Institute (BTI) and Cornell University have boosted a carbon-craving enzyme called RuBisCO to turbocharge photosynthesis in corn.
Eco-friendly nanoparticles for artificial photosynthesis
Researchers at the University of Zurich have developed a nanoparticle type for novel use in artificial photosynthesis by adding zinc sulfide on the surface of indium-based quantum dots.
More Photosynthesis News and Photosynthesis Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.