Understanding Mercury's magnetic tail

April 17, 2018

WASHINGTON, D.C., April 17, 2018 - Theoretical physicists used simulations to explain the unusual readings collected in 2009 by the Mercury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) mission. The origin of energetic electrons detected in Mercury's magnetic tail has puzzled scientists. This new study, appearing in Physics of Plasmas, from AIP Publishing, provides a possible solution to how these energetic electrons form.

Magnetic material's flow inside a planet creates a global magnetic field. In Mercury, and in Earth, liquid metal currents in the planetary cores induce the planets' magnetic fields. These fields vary in shape, size, angle and strength from planet to planet, but are all important for protecting planets from solar particles.

Solar wind blasts planets with radiation and causes magnetic substorms, which we sometimes see on Earth as the northern lights. Magnetic tails or magnetotails form when intense radiation pressure from solar winds "pushes" on the planet's magnetic fields. These tails form on the nighttime side of the planet, facing away from the sun. On Mercury, magnetic substorms in the tail are bigger and more rapid than those observed on Earth.

Mercury's magnetic field is 100 times weaker than Earth's, so it surprised physicists that MESSENGER detected signs of energetic electrons in the planet's magnetic tail -- the Hermean magnetotail. "We wanted to find out why the satellite found energetic particles," said Xiaowei Zhou, an author of the study.

A likely candidate responsible for the presence of these energetic particles is magnetic reconnection. Magnetic reconnection occurs when the arrangement of magnetic field lines change, releasing kinetic and thermal energy. However, in the turbulent astrophysical environment, magnetic reconnection is poorly understood. In this study, Chinese and German physicists investigated magnetic reconnection within the context of turbulence in the Hermean magnetotail.

Magnetohydrodynamic simulations and test particle calculations showed that plasmoids -- distinct magnetic structures that encompass plasma -- are generated during magnetic reconnection. These plasmoids accelerate energetic electrons. The simulation results are supported by MESSENGER measurements of plasmoid species and plasmoid reconnection in the Hermean magnetotail.

The researchers also used a mean-turbulence model to describe the turbulence of subgrid-scale physical processes. Acceleration processes were scaled to parameters that mimic characteristic conditions reported from the Hermean magnetotail. The simulations showed that in these conditions, turbulent plasmoid reconnection could be responsible for electron acceleration. "We also showed that turbulence enhances reconnection by increasing the reconnection rate," Zhou said.

The team's model predicts the upper limits for turbulent plasmoid reconnection and the corresponding electron acceleration. The Bepi-Colombo mission, due to launch October 2018, will test these predictions. The Bepi-Colombo satellites, built to withstand the harsh, hot environment near the sun, will be inserted into Mercury's orbit in 2025 for one Earth year to transmit observations from the planet.

"Previous satellites could not test the high energies from electrons and one aim of this mission is to measure the energetic particles from the Hermean magnetotail with new detector technology," Zhou said. With this new technology, the researchers hope to gain a more detailed subscale view of the effects of turbulence.
The article, "Electron acceleration by turbulent plasmoid reconnection," is authored by Xiaowei Zhou, Joerg Buechner, Fabien Widmer and Patricio A. Munoz. The article will appear in Physics of Plasmas April 17, 2018 (DOI: 10.1063/1.5011013). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.5011013.


Physics of Plasmas is devoted to the publication of original experimental and theoretical work in plasma physics, from basic plasma phenomena to astrophysical and dusty plasmas. See http://pop.aip.org.

American Institute of Physics

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.