Strong carbon fiber artificial muscles can lift 12,600 times their own weight

April 17, 2018

The pull-up, an exercise dreaded by most, answers a basic question: are your muscles strong enough to lift your own body weight?

Some Illinois researchers working on artificial muscles are seeing results even the fittest individuals would envy, designing muscles capable of lifting up to 12,600 times their own weight.

Assistant professor of mechanical science and engineering Sameh Tawfick, Beckman postdoctoral fellow Caterina Lamuta, and Simon Messelot recently published a study on how to design super strong artificial muscles in the journal Smart Materials and Structures. The new muscles are made from carbon fiber-reinforced siloxane rubber and have a coiled geometry.

These muscles are capable of not only lifting up to 12,600 times their own weight, but also supporting up to 60 MPa of mechanical stress, providing tensile strokes higher than 25% and specific work of up to 758 J/kg. This amount is 18 times more than the specific work natural muscles are capable of producing. When electrically actuated, the carbon fiber-based artificial muscles show excellent performance without requiring a high input voltage: the authors showed how a 0.4 mm diameter muscle bundle is able to lift half a gallon of water by 1.4 inches with only 0.172 V/cm applied voltage.

"The range of applications of these low cost and light weight artificial muscles is really wide and involves different fields such as robotics, prosthetics, orthotics, and human assistive devices," Lamuta said. "The mathematical model we proposed is a useful design tool to tailor the performance of coiled artificial muscles according to the different applications. Furthermore, the model provides a clear understanding of all the parameters that play an important role in the actuation mechanism, and this encourages future research works toward the development of new typologies of fiber-reinforced coiled muscles with enhanced properties."

The artificial muscles themselves are coils comprised of commercial carbon fibers and polydimethylsiloxane (PDMS). A carbon fibers tow is initially dipped into uncured PDMS diluted with hexane and then twisted with a simple drill to create a yarn with a homogeneous shape and a constant radius. After the curing of the PDMS, the straight composite yarn is highly twisted until it is fully coiled.

"Coiled muscles were invented recently using nylon threads," Tawfick said. "They can exert large actuation strokes, which make them incredibly useful for applications in human assistive devices: if only they could be made much stronger."

The team set a target of transforming carbon fibers, a very strong lightweight material which is readily commercially available, into artificial muscles.

"To use carbon fibers, we had to understand the mechanism of contraction of coiled muscles. Once we uncovered the theory, we learned how to transform carbon fibers into ultra strong muscles. We simply filled carbon fiber tows with the suitable type of silicone rubber, and their performance was impressive, precisely what we had aimed for," Tawfick said. This study demonstrates that muscle contraction is caused by an increase in the radius of the muscle yarn due to thermal expansion or solvent absorption of the silicone filing. "The muscles flex when the silicone rubber locally pushes the fibers apart within the tow, by applying a voltage, heat or swelling by a solvent. The internal pressure exerted from the silicone rubber onto the fibers makes the tow diameter expand and uncoil causing a contraction stroke along the length."

During the experimental characterization, a DC voltage was applied to the ends of the coil to induce the heating of the composite and in turn cause tensile actuation. The top end of the coil was fixed, while a load was attached to the bottom to create tension. The tensile stroke was captured by a movie camera, and analyzed frame by frame. Tensile actuation was also induced through swelling via liquid hexane delivered to the coiled muscle.

Can these muscles flex even more, achieving larger strokes? The close agreement between mathematical predictions and experimental realization provides confidence in answering this question. The team found that the tensile actuation of the artificial coiled muscles can be limited by the ability of the guest material (silicone) to expand - a limit imposed by the thermal degradation properties of the guest material. This explains why muscles actuated by swelling have higher actuation strains, they are able to swell more than heat- induced muscles. The theoretical model proposed by the authors sheds light on how to design guest material which could enable muscles with an even more impressive performance.
-end-


University of Illinois College of Engineering

Related Weight Articles from Brightsurf:

How much postmenopause weight gain can be blamed on weight-promoting medications?
Abdominal weight gain, which is common during the postmenopause period, is associated with an array of health problems, including diabetes and heart disease.

Commercial weight management groups could support women to manage their weight after giving birth
Women who were overweight at the start of their pregnancy would welcome support after they have given birth in the form of commercial weight management groups, University of Warwick-led research has found.

Rollercoaster weight changes can repeat with second pregnancy, especially among normal-weight women
Everyone knows that gaining excess weight during one pregnancy is bad, but clinicians rarely consider weight gains and losses from one pregnancy to the next -- especially in normal-weight women.

Early and ongoing experiences of weight stigma linked to self-directed weight shaming
In a new study published today in Obesity Science and Practice, researchers at Penn Medicine and the University of Connecticut Rudd Center for Food Policy and Obesity surveyed more than 18,000 adults enrolled in the commercial weight management program WW International, and found that participants who internalized weight bias the most tended to be younger, female, have a higher body mass index (BMI), and have an earlier onset of their weight struggle

Being teased about weight linked to more weight gain among children, NIH study suggests
Youth who said they were teased or ridiculed about their weight increased their body mass by 33 percent more each year, compared to a similar group who had not been teased, according to researchers at the National Institutes of Health.

Association between weight before pregnancy, weight gain during pregnancy and adverse outcomes for mother, infant
An analysis that combined the results of 25 studies including nearly 197,000 women suggests prepregnancy body mass index (BMI) of the mother was more strongly associated with risk of adverse maternal and infant outcomes than the amount of gestational weight gain.

Study: Faster weight loss no better than slow weight loss for health benefits
Losing weight slowly or quickly won't tip the scale in your favor when it comes to overall health, according to new research.

What your choice of clothing says about your weight
It's commonly said that you can tell a great deal about a person by the clothes they wear.

Stand up -- it could help you lose weight
You might want to read this on your feet. A new study published today in the European Journal of Preventive Cardiology found that standing instead of sitting for six hours a day could prevent weight gain and help people to actually lose weight.

Cash for weight loss
A new study, published in the journal Social Science and Medicine, has shown that selling rewards programmes to participants entering a weight loss programme is a low cost strategy to increase both the magnitude and duration of weight loss.

Read More: Weight News and Weight Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.