Nav: Home

Biosensor 'bandage' collects and analyzes sweat

April 17, 2019

Like other biofluids, sweat contains a wealth of information about what's going on inside the body. However, collecting the fluid for analysis, usually by dripping or absorbing it from the skin's surface, can be time-consuming and messy. Now, researchers have developed a bandage-like biosensor that both collects and -- in conjunction with a smart phone -- analyzes sweat. The device, which could someday help diagnose diseases, is reported in ACS' journal Analytical Chemistry.

Compared with other biofluids such as blood, sweat has the potential to be obtained less invasively for diagnostic testing. Researchers have developed tools to collect and analyze sweat, such as temporary tattoos or microfluidic devices, but they typically require wires, electronics or sophisticated structures. Tailin Xu, Li-Ping Xu, Xueji Zhang and colleagues wanted to make a wearable biosensor resembling a bandage that samples sweat and uses a simple color-changing assay to quantify various components.

To make their device, the researchers coated a flexible polyester film with a super-hydrophobic silica suspension. They then etched microwells into the silica layer to collect perspiration. At the bottom of the wells, they placed dyes that change color with pH or concentration of chloride, glucose or calcium. The team added an adhesive backing and attached the biosensor bandage onto a volunteer's skin. When the person exercised, their perspiration collected in the microwells, and the spots changed colors. By imaging and analyzing the colors with a cell phone, the researchers determined that the sweat pH was 6.5-7.0, with a chloride concentration of about 100 mM and trace amounts of calcium and glucose. The researchers are now working on increasing the sensitivity of the device.
-end-
The authors acknowledge funding from the National Natural Science Foundation of China, Beijing Natural Science Foundation, Fundamental Research Funds for Central Universities, National Postdoctoral Innovative Talents Support Program of China, Program for Guangdong Introducing Innovative and Entrepreneurial Teams and the Shenzhen Fundamental Research Program.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Glucose Articles:

What drives inflammation in type 2 diabetes? Not glucose, says new research
Research led by Barbara Nikolajczyk, Ph.D., disproved the conventional wisdom that glucose was the primary driver of chronic inflammation in type 2 diabetes.
ALS patients may benefit from more glucose
A new study led by scientists at the UA has uncovered a potential new way to treat patients with ALS, a debilitating neurodegenerative disease.
Artificial muscles powered by glucose
Artificial muscles made from polymers can now be powered by energy from glucose and oxygen, just like biological muscles.
Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.
Protein released from fat after exercise improves glucose
Exercise training causes dramatic changes to fat. Additionally, this 'trained' fat releases beneficial factors into the bloodstream.
WSU researchers create 3D-printed glucose biosensors
A 3D-printed glucose biosensor for use in wearable monitors has been created by Washington State University researchers.
Gut protein mutations shield against spikes in glucose
Why is it that, despite consuming the same number of calories, sodium and sugar, some people face little risk of diabetes or obesity while others are at higher risk?
Glucose binding molecule could transform the treatment of diabetes
Scientists from the University of Bristol have designed a new synthetic glucose binding molecule platform that brings us one step closer to the development of the world's first glucose-responsive insulin which, say researchers, will transform the treatment of diabetes.
Nutrients may reduce blood glucose levels
One amino acid, alanine, may produce a short-term lowering of glucose levels by altering energy metabolism in the cell.
Cancer hijacks the microbiome to glut itself on glucose
A University of Colorado Cancer Center study published today in the journal Cancer Cell shows that leukemia actively undercuts the ability of normal cells to consume glucose, thus leaving more glucose available to feed its own growth.
More Glucose News and Glucose Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.