Nav: Home

Study identifies how Enterococcus faecalis bacteria causes antibiotic resistant infection

April 17, 2019

A new study led by a research team from Massachusetts Eye and Ear and Harvard Medical School describes how bacteria adapted to the modern hospital environment and repeatedly cause antibiotic-resistant bloodstream infections. Infections acquired by hospitalized patients are more often antibiotic-resistant than those that occur elsewhere, and hospitals invest considerable effort to prevent them. Despite best efforts, some bacteria are able to persist and circulate among patients, causing repeated infections. This study examined one of the first sustained hospital outbreaks of a multidrug-resistant bacterium, Enterococcus faecalis, which occurred from the early through the mid-1980s, causing over 60 outbreak strains.

The study, published online April 10 in Science Translational Medicine, was led by a research team headed by Michael Gilmore, PhD, Senior Scientist at Mass. Eye and Ear, and the Sir William Osler Professor of Ophthalmology, and Director of the Infectious Disease Institute in the Department of Ophthalmology at Harvard Medical School. The team compared the DNA sequences of bacteria that had been archived from the outbreak 30 years ago by collaborator Mark M. Huycke, MD, infectious disease specialist now at the University of Oklahoma Health Sciences Center. Spearheaded by Gilmore laboratory research associate Daria Van Tyne, PhD, and with the help of Broad Institute Scientist Ashlee Earl, PhD, the researchers identified mutations in the bacteria as they caused one infection after another over 4 years.

The study's authors hope the novel findings on how enterococci infect the bloodstream will help scientists and physicians develop new ways to prevent these infections from happening, and to better treat them when they occur.

"Knowing how the microbes outsmarted the body's immune system and antibiotics tells us what is critical to the microbe in order to cause infection," says Dr. Gilmore. "This in turn gives us a clearer shot at new targets for developing the next generation of antibiotics, and for guiding their careful use inside and outside of hospitals."

Naturally occurring in the human gut, enterococci bacteria can lead to infections including bloodstream and urinary tract infections, infections of surgical sites, and endocarditis--infection of the heart valves.

Researchers examined the genomes of the bacteria to analyze samples from an early outbreak of bacteremia in patients in a Wisconsin hospital between 1984 and 1988 that was caused by multidrug-resistant Enterococcus faecalis in order to learn how they adapted to existence in the hospital and transmission from one patient to another. By going back to the early days of the antibiotic resistance problem, Dr. Van Tyne, Dr. Gilmore, and colleagues were able to see that Enterococcus faecalis entering into the bloodstream first turn on an unusual pathway that allows the microbe to make a new substance that helps to shore up its cell wall. This makes the bacterium more able to resist being killed by white blood cells, and also by antibiotics of the penicillin class that attack the bacterial cell wall. The authors also saw that in the middle of the outbreak, the types of adaptations suddenly changed, and the bacteria began to reinforce their cell walls in a new way. This change corresponded to the introduction and widespread use of a then-new antibiotic, called imipenem.

Dr. Van Tyne, now an Assistant Professor in the University of Pittsburgh Department of Medicine, was able to repeatedly recreate the exact change 30 years later in the laboratory, using an imipenem class antibiotic, proving the link.

"Our study shows how an enterococcal outbreak lineage emerged and evolved over an extended hospital outbreak and how outbreak strains responded to host immune selection and changing antibiotic regimens," says Dr. Van Tyne. "These findings highlight new pathways that could be further leveraged in the future for control and management of hospital-acquired enterococcal infections."

Antibiotic resistant infection is a leading threat to public health worldwide. It has been estimated that by 2050, more people could die from infections that are no longer treatable with antibiotics, than from cancer. Understanding how some bacteria have been able to overcome our natural immune defenses, and new drugs as they are introduced, is the key to preventing a future where up to 10 million people could die each year from antibiotic resistant infection, according to Dr. Gilmore.

"This research study is a powerful example of how scientists like Dr. Gilmore are utilizing new genetic technologies and molecular biology to uncover new and important information about drug-resistant bacteria, so we may better understand, and ultimately prevent and treat life-threatening infections," says Joan W. Miller, MD, the David Glendenning Cogan Professor and Chair of Ophthalmology at Harvard Medical School, Chief of Ophthalmology at Mass. Eye and Ear and Massachusetts General Hospital, and Ophthalmologist-in-Chief at Brigham and Women's Hospital.
-end-
In addition to Dr. Gilmore and Dr. Van Tyne, co-authors on the Science Translational Medicine study include Abigail L. Manson, PhD and Ashlee M. Earl, PhD, of Broad Institute, Mark M. Huycke, MD, of Oklahoma Health Sciences Center, and John Karanicolas, PhD of Fox Chase Cancer Center. This study was supported by PHS grant nos. AI083214 (Harvard-wide Program on Antibiotic Resistance) and AI072360 to M.S.G. and grant no. EY028222 to D.V.T. Additional support for genome sequence analysis was provided by NIAID contract no. HHSN272200900018C and grant no. U19AI110818 to the Broad Institute. M.M.H. was supported by the Francis Duffy Endowment.

About Massachusetts Eye and Ear

Massachusetts Eye and Ear, founded in 1824, is an international center for treatment and research and a teaching hospital of Harvard Medical School. A member of Partners HealthCare, Mass. Eye and Ear specializes in ophthalmology (eye care) and otolaryngology-head and neck surgery (ear, nose and throat care). Mass. Eye and Ear clinicians provide care ranging from the routine to the very complex. Also home to the world's largest community of hearing and vision researchers, Mass. Eye and Ear scientists are driven by a mission to discover the basic biology underlying conditions affecting the eyes, ears, nose, throat, head and neck and to develop new treatments and cures. In the 2018-2019 "Best Hospitals Survey," U.S. News & World Report ranked Mass. Eye and Ear #4 in the nation for eye care and #6 for ear, nose and throat care. For more information about life-changing care and research at Mass. Eye and Ear, please visit our blog, Focus, and follow us on Instagram, Twitter and Facebook.

About Harvard Medical School Department of Ophthalmology

The Harvard Medical School Department of Ophthalmology (eye.hms.harvard.edu) is one of the leading and largest academic departments of ophthalmology in the nation. More than 400 full-time faculty and trainees work at eight Harvard Ophthalmology affiliate institutions, including Massachusetts Eye and Ear [home to Schepens Eye Research Institute], Massachusetts General Hospital, Brigham and Women's Hospital, Boston Children's Hospital, Beth Israel Deaconess Medical Center, Joslin Diabetes Center/Beetham Eye Institute, Veterans Affairs Boston Healthcare System, , and Cambridge Health Alliance. Formally established in 1871, the department has been built upon a strong and rich foundation in medical education, research, and clinical care. Through the years, faculty and alumni have profoundly influenced ophthalmic science, medicine, and literature--helping to transform the field of ophthalmology from a branch of surgery into an independent medical specialty at the forefront of science.

Massachusetts Eye and Ear Infirmary

Related Bacteria Articles:

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.