Nav: Home

Making a fast ion transporter

April 17, 2019

Na+/H+ antiporters exchange sodium ions and protons across cellular membrane to control pH, ion concentrations and cell volume, which is linked to a wide spectrum of diseases from heart failure to autism. Researchers now design a faster Na+/H+ antiporter based on the simulations.

An international team of researchers, research associate professor Kei-ichi Okazaki at Institute for Molecular Science and groups of professors Gerhard Hummer and Werner Kühlbrandt at Max Planck Institute of Biophysics, revealed an ion transport mechanism of the archaeal Na+/H+ antiporter PaNhaP in atomic detail by molecular dynamics simulations. Based on the simulations, they discovered a pair of residues that serves as a gate to the ion-binding site. Furthermore, they found that a mutation weakening the gate makes the transporter twice as fast as the wild type. The work was published in Nature Communications on April 15, 2019.

"It was surprising that the mutation makes the transporter faster," Okazaki says, "the speed-up suggests that the gate balances competing demands of fidelity and efficiency." The gate was discovered through simulations where they applied a method called transition path sampling to overcome the enormous time-scale gap between seconds-scale ion exchange and microseconds simulations. The simulations captured the ion transporting events, which is not possible with conventional simulations.

"We would like to understand design principles of transporters, how they recognize their substrates and how they control transport speeds," Okazaki says, "these mechanistic understandings can help develop drugs to cure transporter-related diseases in future."
-end-


National Institutes of Natural Sciences

Related Diseases Articles:

A culprit of thyroid's diseases
How thyroid and its vascular system coordinate themselves and remodel during thyroid disease.
Synthetic carbohydrates against autoimmune diseases
Researchers are developing an innovative approach for the treatment of a rare autoimmune disease of the peripheral nervous system, using a type of molecular sponge consisting of carbohydrates to remove pathogenic antibodies from the bloodstream.
Changes of the cell environment are associated with certain eye diseases
In case of ischemic injury to the retina, changes occur in the protein scaffold in the environment of retinal cells, the so-called extracellular matrix.
Stepping up the hunt for genetic diseases
The child's own genome thus consists of a maternal and a paternal genome.
Molecular patterns of complex diseases
The Helmholtz Zentrum München has published results of the largest genome-wide association study on proteomics to date.
Better and faster diagnosis of diseases
Microsystems engineer Can Dincer wins the second prize at Gips-Schüle young scientist competition.
One specific gene explains many diseases
Genetic differences in the FADS1 gene determine the risk for many different diseases.
How the tuberculosis vaccine may protect against other diseases
The tuberculosis vaccine is well known to help protect against other infectious diseases, as well as cancer, but the exact mechanisms have not been clear.
Using drugs for different diseases than initially intended for
Thousands of drugs have the potential to be effective against other diseases than they were developed for.
Thwarting autoimmune diseases
The immunoproteasome dismantles proteins and the resulting fragments are displayed on the surface of cells.

Related Diseases Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".