Nav: Home

New research offers solution to riddle of ocean carbon storage

April 17, 2019

However, researchers have identified that this process - the biological gravitational pump (BGP) - cannot account for all of the carbon reaching the deep ocean, and a range of additional pathways that inject a much wider range of particles have been explored.

Led by IMAS Professor Philip Boyd and including scientists from France and the US, the Review article in the journal Nature proposes that the additional pathways known as particle injection pumps (PIPs) move just as much carbon as the BGP.

Professor Boyd said the research, based on a review of previous studies and new modelling, could reshape understanding of how carbon reaches the seafloor and what happens while it is there.

"Our study goes a long way to finally solving one of the real puzzles that oceanographers have grappled with for a number of years," Professor Boyd said.

"The ocean stores huge amounts of carbon indirectly absorbed from the atmosphere and in doing so plays a major role in moderating the climate impacts of anthropogenic carbon emissions.

"We can measure the sinking flux of carbon-rich particles and compare it with the gradient of dissolved inorganic carbon from low levels near the surface to high levels in the deep ocean.

"But until now we haven't been able to 'balance the books' in explaining the mechanisms that transport and store carbon, as the BGP only explains around half of the carbon that is present."

Professor Boyd said new ocean observation technologies and the datasets they provide have shown in unprecedented detail the way in which PIPs contribute to the carbon cycle.

"PIPs are a range of physical and biological mechanisms that move carbon, including ocean eddies and zooplankton which feed on phytoplankton and excrete carbon-rich faeces as they migrate to deeper water.

"By combining the effects of the biological gravitational pump with PIPs we can, for the first time, balance the books and fully account for ocean carbon storage.

"This breakthrough is vital in allowing us to establish a baseline against which we can measure and understand future changes in ocean carbon and its effects on the global climate.

"It also highlights a number of areas that require further research, so we can better understand the mechanisms involved and their relative contribution to the ocean carbon cycle.

"The more we discover about the ocean the more we are coming to appreciate how complex and four dimensional it is, with multiple processes interacting and feeding back on each other over time.

"As the ocean is such a major influence on global climate it is vital that we improve our understanding of the multi-dimensional mechanisms at work," Professor Boyd said.
-end-
Downloadable media content:
  • Video interview grabs of Prof Boyd talking about the research;
  • Video social media version with Prof Boyd interview and graphic.
https://www.dropbox.com/sh/v6j1ifrrkhlspr1/AABsgtBUaYEKZh9HMzdhpvI_a?dl=0

University of Tasmania

Related Carbon Articles:

The carbon dioxide loop
Marine biologists quantify the carbon consumption of bacterioplankton to better understand the ocean carbon cycle.
Transforming the carbon economy
A task force commissioned in 2016 by former US Secretary of Energy Ernest Moniz has proposed a framework for evaluating R&D on recycling carbon dioxide and removing large amounts of CO2 from the atmosphere.
Closing the carbon loop
Research at the University of Pittsburgh's Swanson School of Engineering focused on developing a new catalyst that would lead to large-scale implementation of capture and conversion of carbon dioxide (CO2) was recently published in the Royal Society of Chemistry journal Catalysis Science & Technology.
An overlooked source of carbon emissions
Nations that pledged to carry out the Paris climate agreement have moved forward to find practical ways to reduce greenhouse gas emissions, including efforts to ban hydrofluorocarbons and set stricter fuel-efficiency standards.
Enabling direct carbon capture
Researchers have developed a solid material that can capture carbon dioxide from the atmosphere, even at very low concentrations.
Development of a novel carbon nanomaterial 'pot'
A novel, pot-shaped, carbon nanomaterial developed by researchers from Kumamoto University, Japan is several times deeper than any hollow carbon nanostructure previously produced.
Unraveling truly one-dimensional carbon solids
Elemental carbon appears in many different forms, including diamond and graphite.
Carbon leads the way in clean energy
Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.
Consumers care about carbon footprint
How much do consumers care about the carbon footprint of the products they buy?
Assessing carbon capture technology
Carbon capture and storage could be used to mitigate greenhouse gas emissions and thus ameliorate their impact on climate change.

Related Carbon Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...