Nav: Home

Fish that outlived dinosaurs reveals secrets of ancient skull evolution

April 17, 2019

A new study into one of the world's oldest types of fish, Coelacanth, provides fresh insights into the development of the skull and brain of vertebrates and the evolution of lobe-finned fishes and land animals, as published in Nature.

Coelacanth (Latimeria chalumnae) is so rare it was thought to have gone extinct with dinosaurs over 65 million years ago. But the discovery of a living specimen off the coast of South Africa in 1938 prompted debate about whether this fish fits into our understanding about the evolution of land animals.

The skull of this fish also happens to be completely split in half a by special 'intracranial joint' and it's brain is so ridiculously small, it remains only one percent the size of the cavity that houses it, which makes Coelacanth survival unique amongst all living vertebrates.

A new paper from an international team of researchers provides insights into the biology of the unique skull of this fish and its links to the evolution of vertebrate species, including humans.

How the coelacanth skull grows and why the brain remains so small has remained a secret for thousands of years but a team of researchers, led by Dr Hugo Dutel at the University of Bristol, have studied its brain cavity at different stages of development to understand when the skull divides to form a hinged brain case.

Collaborator Professor John Long from Flinders University says the discovery provides a better understanding of why ancient fossil fish had hinged heads and suggests why four limbed animals later lost this joint between two parts of their skull.

"We think that formation of this special joint is probably caused by the unique development of the notochord (a tube extending below the brain and the spinal cord in the early stages of life).

"It usually degenerates into a small rod below the brain in some fishes. However, the notochord for Coelacanth expands dramatically to become 50 times bigger than the brain in the adult fish."

"This process of brain growth is very unusual, especially compared to primates like us in which the brain expands dramatically. A mismatch between the brain and its cavity also exists in some other living and fossil fishes, but what is observed here is totally unequalled among vertebrates."

Two species of primitive, slow-moving coelacanths still around today are often called "living fossils" because they remain physically unchanged.

The scientists used state-of-the-art imaging techniques to visualize the internal anatomy of the fish without damaging them.

They digitalized a 5 cm-long fetus, the earliest developmental stage available, with synchrotron X-ray at the European Synchrotron (ESRF).

The data was used to generate detailed 3D models, which allowed the team to analyse how the form of the skull, the brain and the notochord changes from a fetus to an adult.

"Coelacanths are iconic animals thought to be on the line to the first land animals or tetrapods, because of their strange hinged head," says Professor Long.

"This new research shows the peculiar hinge in the skull was caused by persistence of the large cartilaginous rod, or notochord, preventing the skull form ossifying as one solid unit."

The team also observed how these structures are positioned relative to each other at each stage, and compared their observations with what is known about the formation of the skull in other vertebrates.

Dr Hutel says These are very unique observations, but they represent only a tiny step forward compared to the amount we know on the development of other species.

"There are still more questions than answers! Latimeria still holds many clues for our understanding of vertebrate evolution, and it is important to protect this threatened species and its environment."
-end-


Flinders University

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...