Nav: Home

3D modelling identifies nutrient exchange in the human placenta

April 17, 2019

New three-dimensional imaging of the human placenta has been developed to help understand the reasons for fetal growth restriction - a condition which affects thousands in the UK alone.

Across all species of mammals, vital life-giving nutrients are transported around the body by complex networks of blood vessels. Despite the importance of these networks, there is still relatively little known about the physical factors which determine the transport of solutes such as oxygen to tissues and organs.

Now, new findings published today in Science Advances, detail three-dimensional imaging research by a group of scientists at The University of Manchester and St Mary's Hospital. The research has opened up understanding about this vital life-sustaining process by mathematically modelling the human placenta.

The placenta is a life-support system for a growing fetus. The placenta contains numerous terminal villi, small structures containing disordered networks of fetal capillaries that are surrounded by maternal blood.

The placenta is unique in that it performs the diverse roles of several organs at once. In particular it allows the exchange of oxygen and vital nutrients between a mother and her developing fetus. However, the importance of the placenta in conditions such as fetal growth restriction, a condition which affects 35,000 pregnancies annually in the UK alone, remains poorly understood.

Now a specialist team of scientists made up of mathematicians, physicists, physiologists and clinical consultants, have used 3D imaging to help model some of the complex processes performed by the placenta.

Dr Igor Chernyavsky, MRC & Presidential Research Fellow and lead author said: "In our new study we show how the irregular three-dimensional structure of a terminal villus determines its capacity to exchange solutes such as oxygen between mother and fetus.

"Combining image analysis and computational fluid dynamics, we can now quantify mathematically the exchange capacity of individual terminal villi. We now anticipate that this advance will aid the development of larger-scale computational models of placental function. We hope that our new understanding of the role of placental geometry in fetal development will help clinicians address diseases where placental structure is compromised."
-end-


University of Manchester

Related Placenta Articles:

Villous tree model with active contractions for estimating blood flow conditions
Perfusion in the human placenta is an important physiological phenomenon which shows the placental conditions.
Why is one twin smaller than the other? Answer could lie in the placenta
When a baby is born small, it's often attributed to genetic factors or maternal risk factors like poor nutrition or smoking.
When malaria infects the placenta during pregnancy, baby's future immunity can be affected
Mothers infected with malaria during pregnancy can pass more of their own cells to their baby and change the infant's risk of later infection, a new study shows.
Genetic finding may allow doctors to predict newborn health during pregnancy
UCLA scientists have discovered specific genetic changes in the placentas of women who gave birth to growth-restricted infants.
Stopping Zika from crossing the placenta
Although the World Health Organization ended its global health emergency on Zika last November, the virus could still make a comeback this summer.
Circulation favors placenta over brain in fetuses of diabetic mothers
Blood flows preferentially to the placenta instead of the brain in fetuses of mothers with diabetes, reveals research presented today at EuroEcho-Imaging 2016.
Placenta in females, muscle mass in males: The dual heritage of a virus
It is known that genes inherited from ancient retroviruses are essential to the placenta in mammals, a finding to which scientists in the Laboratoire Physiologie et Pathologie Moleacuteculaires des Retrovirus Endogenes et Infectieux contributed.
Yale study identifies how Zika virus infects the placenta
In a new study, Yale researchers demonstrate Zika virus infection of cells derived from human placentas.
The force is strong with embryo cells
For a cell in an embryo, the secret to becoming part of the baby's body instead of the placenta is to contract more and carry on dancing, scientists at EMBL have found.
Penn researchers develop placenta-on-a-chip
Researchers at the University of Pennsylvania have developed the first placenta-on-a-chip that can fully model the transport of nutrients across the placental barrier.

Related Placenta Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...