Nav: Home

Fundamentally new MRI method developed to measure brain function in milliseconds

April 17, 2019

The speed of the human brain is remarkable -- in a fraction of a second, neurons are activated, propagating thoughts and reactions to stimuli. But the speed at which we can noninvasively follow brain function using an MRI is not as impressive. Functional MRI (fMRI), which measures changes in blood oxygen levels, has revolutionized the field of neuroscience by revealing functional aspects of the brain. But the changes that fMRI is sensitive to can take up to six seconds in humans -- a veritable eon in brain time. Investigators from Brigham and Women's Hospital, in collaboration with colleagues at King's College London and INSERM-Paris, have discovered a fundamentally new way to measure brain function using a technology known as magnetic resonance elastography (MRE), an approach that creates maps of tissue stiffness using an MRI scanner. In a paper published in Science Advances, the team presents data from preclinical studies indicating that the technique can track brain function activity on a time scale of 100 milliseconds. Studies of the technique in human participants are now underway.

"What excites me most is that this an entirely new method, and I've always been intrigued by new science," said co-corresponding author Sam Patz, PhD, a physicist in the Brigham's Department of Radiology and professor of Radiology at Harvard Medical School. This work, which started out as a hunch and is now being borne out by rigorous experiments, represents the collaborative work of an international team dedicated to the pursuit of this new way of imaging brain function. "The data we are publishing was obtained in mice, but translation of this technology to humans is straightforward and initial studies are currently underway."

This work is the culmination of a five-year collaboration between Patz, co-corresponding author Ralph Sinkus PhD, and many others. Sinkus, a physicist and professor at King's College London and INSERM Paris, is a pioneer in the field of MRE and played a key role both in helping get the MRE research program started for preclinical testing in Patz's Boston-based lab as well as in carrying out the research being reported. Both Patz and Sinkus point to each other as an example of how a true collaborative relationship should function.

Although initially interested in applying MRE to the lungs, the team decided to also run scans of the brain. The results from these scans revealed something surprising: The acoustic cortex was stiffening, for no apparent reason. "These results were so unexpected that we had to pursue them, and this observation is what sparked everything else," said Sinkus. "It's a true interest in science that made this happen."

On a hunch, Patz plugged one of the mouse's ear canals with a gel. Sure enough, when he took another "elastogram" image of the mouse's brain, he could see that the auditory cortex on the side of the brain that processed sound from that ear had begun to soften. In repeated preclinical studies, this initial observation has been replicated, showing which regions of the brain stiffen or soften under different types of stimulus timing.

"The intriguing novelty of this approach is that the stiffening/softening of specific brain regions persists even when stimuli as short as 100 milliseconds are presented to the mouse," said Patz.

Both Sinkus and Patz agreed that the changes in stiffness parallel neuronal activity, allowing one to "see the brain thinking" in almost real-time.

The team is now interested in using MREs to observe neuronal activity in the human brain, which could have implications for diagnosing and understanding neurological pathologies in which neuronal activity may be slowed, disrupted our rerouted -- such as Alzheimer's, dementia, multiple sclerosis, or epilepsy.

The team's approach leverages novel hardware to induce vibrations in the brain -- an essential part to measure brain stiffness via MRI. Patz likens the elastography apparatus to holding an electric toothbrush against one's head in order to create tiny mechanical waves that travel through the brain. Standard MRE methodology was used to measure the waves as they travel through the brain but a new mathematical approach by the Sinkus group was implemented to create the elastograms from the raw data. The team also used a new MRE protocol to compare the stiffness of the brain in two different functional states that correspond to a stimulus applied or not applied to the hind limb in mice. The researchers present data showing that modulating the stimulus influenced the location, phase and the intensity of the elasticity changes seen in the brain, meaning that they can visualize regional responses in the brain as they unfold at high speed.

"We believe this will transform our ability to observe neuronal functional activity with implications for neurological pathologies," said Patz.
Funding for this work was provided by the National Institutes of Health (R21 EB030757), the European Union's Horizon 2020 Research and Innovation program under grant agreement No 668039, German Research Foundation (DFG, SCHR 1542/1-1), Brigham and Women's Hospital Department of Radiology and Boston University Department of Engineering, the Wellcome/EPSRC Centre for Medical Engineering (WT 203148/Z/16/Z), the European Union Seventh Framework Programme FP7/20072013 under grant agreement n° 601055.

Paper cited: Patz, S et al. "Imaging localized neuronal activity at fast timescales through biomechanics" Science Advances DOI: 10.1126/sciadv.aav3816

Brigham and Women's Hospital

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...