Nav: Home

Researchers use gene editing with CRISPR to treat lethal lung diseases before birth

April 17, 2019

PHILADELPHIA -- Using CRISPR gene editing, a team from Penn Medicine and Children's Hospital of Philadelphia (CHOP) have thwarted a lethal lung disease, in an animal model, in which a harmful mutation causes death within hours after birth. This proof-of-concept study, published in Science Translational Medicine this week, showed that in utero editing could be a promising new approach for treating lung diseases before birth.

"We wanted to know if this could work at all," said study co-leader Edward E. Morrisey, PhD, a professor of Cardiovascular Medicine and Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania, and scientific director of Penn's Institute for Regenerative Medicine. "The trick was how to direct the gene-editing machinery to target cells that line the airways of the lungs."

The lung conditions the team is hoping to solve -- congenital diseases such as cystic fibrosis, surfactant protein deficiency, and alpha-1 antitrypsin -- are characterized by respiratory failure at birth or chronic lung disease with few options for therapies. About 22 percent of all pediatric hospital admissions are attributed to respiratory disorders, and congenital causes of respiratory diseases are often lethal, despite advances in care and a deeper understanding of their molecular causes. Because the lung is a barrier organ in direct contact with the outside environment, targeted delivery to correct defective genes is an attractive therapy.

"The developing fetus has many innate properties that make it an attractive recipient for therapeutic gene editing," said study co-leader William H. Peranteau, MD, an investigator at CHOP's Center for Fetal Research, and a pediatric and fetal surgeon in CHOP's Center for Fetal Diagnosis and Treatment. "The ability to cure or mitigate a disease via gene editing in mid- to late gestation before birth and the onset of irreversible pathology is very exciting. This is particularly true for diseases that affect the lungs, whose function becomes dramatically more important at the time of birth."

The researchers showed that precisely timed in utero delivery of CRISPR gene-editing reagents to the amniotic fluid during fetal development resulted in targeted changes in the lungs of mice. They introduced the gene editors into developing mice four days before birth, which is analogous to the third trimester in humans.

The cells that showed the highest percentage of editing were alveolar epithelial cells and airway secretory cells lining lung airways. In 2018, a team led by Morrisey identified the alveolar epithelial progenitor (AEP) lineage, which is embedded in a larger population of cells called alveolar type 2 cells. These cells generate pulmonary surfactant, which reduces surface tension in the lungs and keeps them from collapsing with every breath. AEPs are a stable cell type in the lung and turn over very slowly, but replicate rapidly after injury to regenerate the lining of the alveoli and restore gas exchange.

In a second experiment, the researchers used prenatal gene-editing to reduce the severity of an interstitial lung disease called surfactant protein C (SFTPC) deficiency in a mouse model that has in common a disease-causing mutation found in the human Sftpc gene. One hundred percent of untreated mice with this mutation die from respiratory failure within hours of birth. In contrast, prenatal gene-editing to inactivate the mutant Sftpc gene resulted in improved lung morphology and survival of the animals.

Future studies will be directed towards increasing the efficiency of the gene editing in the epithelial lining of lungs as well as evaluating different mechanisms to deliver gene editing technology to lungs. "Different gene editing techniques are also being explored that may one day be able to correct the exact mutations observed in genetic lung diseases in infants," Morrisey said.

Morrisey collaborated on a recent study led by Peranteau and Kiran Musunuru, MD, PhD, an associate professor of Cardiovascular Medicine at Penn, demonstrating the feasibility of in utero gene editing to rescue a lethal liver disease in a mouse model -- the first time in utero CRISPR-mediated gene editing prevented a deadly metabolic disorder in animals. Similar to that study, Peranteau said "the current research is a proof-of-concept study highlighting the exciting future prospects for prenatal treatments including gene editing and replacement gene therapy for the treatment of congenital diseases."
-end-
Funding for this work came from the National Institutes of Health (HL134745, HL132999, TR001878), the Penn Orphan Disease Center, the Pulmonary Fibrosis Foundation Fund in Cardiovascular Innovation, and gifts to the Children's Hospital of Philadelphia.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $405 million awarded in the 2017 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; Penn Wissahickon Hospice; and Pennsylvania Hospital - the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine, and Princeton House Behavioral Health, a leading provider of highly skilled and compassionate behavioral healthcare.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2017, Penn Medicine provided $500 million to benefit our community.

University of Pennsylvania School of Medicine

Related Respiratory Failure Articles:

New clues found to common respiratory virus
Scientists have solved the structure of a protein that helps a common respiratory virus evade the immune system.
Heart attack risk increases 17-fold following respiratory infections
The risk of having a heart attack is 17 times higher in the seven days following a respiratory infection, University of Sydney research has found.
Affection of the respiratory muscles in combined complex I and IV deficiency
Mitochondrial disorders (MIDs) frequently manifest as myopathy. Myopathy may also involve the respiratory muscles.
Vitamin D reduces respiratory infections, says CU Anschutz study
Researchers at the University of Colorado Anschutz Medical Campus have found that high doses of vitamin D reduce the incidence of acute respiratory illness in older, long-term care residents.
Vaping may lead to fewer respiratory infections for ex-smokers
The majority of smokers who successfully switch to vaping say they have fewer respiratory infections, according to a study led by Queen Mary University of London.
Research associates some pesticides with respiratory wheeze in farmers
New research from North Carolina State University connects several pesticides commonly used by farmers with both allergic and non-allergic wheeze, which can be a sensitive marker for early airway problems.
Fungus a possible precursor of severe respiratory diseases in pigs
Pneumocystis carinii causes mild forms of pneumonia in pigs and was considered of low diagnostic relevance.
Opened up new channels for antibacterial therapies to combat respiratory infections
A piece of research led by the Agrobiotechnology Institute (IdAB) used a pioneering methodology to identify bacterial components involved in the infection caused by a pathogen that colonises the respiratory tracts of people with COPD (chronic obstructive pulmonary disease).
Chemicals in e-cigarette flavors linked to respiratory disease
Diacetyl, a flavoring chemical linked to cases of severe respiratory disease, was found in more than 75 percent of flavored electronic cigarettes and refill liquids tested by researchers at Harvard T.H.

Related Respiratory Failure Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...