Nav: Home

Nanoparticles: Acidic alert

April 17, 2020

Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells. This mechanism could potentially open up new approaches to the targeted elimination of malignant tumors.

Ions play crucial roles in all aspects of cell biology. They trigger signaling cascades, regulate enzyme activities and control the pH of the intra- and extracellular media. The concentrations of free ions are therefore tightly regulated, and sudden changes in their intracellular levels can induce programmed cell death. However, this very fact has made it difficult to elucidate the complex mechanisms that control ion concentrations in cells. Because cells act rapidly to block the import of excess ions, they effectively resist attempts to manipulate intracellular ion levels. A research team led by Hanna Engelke and Evelyn Ploetz (Faculty of Chemistry and Pharmacy, LMU) has now synthesized nanoparticles that make it possible - for the first time - to rapidly trigger the large-scale release of ionic iron within cells in a controlled manner. This in turn precipitates a form of inflammatory cell death known as pyroptosis, a type of reaction that is specific to cells of the innate immune system. According to the new study, which appears in the journal Advanced Materials, the ability to induce pyroptosis on demand could in principle be utilized to eliminate malignant cells, and to trigger an immune reaction that is specifically directed against cancers.

The rapid-release effect is a direct result of the structural properties of the nanoparticles, which belong to a class of substances known as metal-organic frameworks (MOFs). The interstices formed by these frameworks provide identical binding sites to which other substances - in this case, iron-oxygen complexes - can be specifically attached. "Structurally, these binding sites are tiny hexagons that are connected to each other by organic linker molecules," Ploetz explains. "MOFs can be thought of as scaffolds, and the pores within each nanoparticle are large enough to allow reaction partners to diffuse into them." In addition the nanoparticles are coated with lipids, which enables them to be taken up by cells.

Once inside the cell, the nanoparticles are transported into organelles called lysosomes, where they are degraded. "We were able to demonstrate that the rate of degradation depends on the pH of the extracellular medium. If the pH value is relatively low, as it is in an acidic milieu, degradation occurs rapidly, which results in a sudden and massive release of iron ions," Ploetz says. She and her colleagues suspect that this effect is attributable to the fact that, under mildly acidic conditions, the reduced form of the amino acid cysteine - which promotes the dissolution of the nanoparticles - is present in excess.

"We were particularly surprised to find that the release of iron from the nanoparticles did not induce ferroptosis, as one might expect in the presence of excess iron. Instead, they trigger a reaction known as pyroptosis," says Ploetz. Induction of pyroptosis in cells of the innate immune system results in a strong inflammatory reaction, which kills the cell concerned, but may serve as a signal that activates anti-tumor immunity.

The authors point out that these nanoparticles have great potential as therapeutic agents, particularly in the treatment of malignant tumors. "The extracellular medium within tumors is more acidic than that associated with normal cells. In principle, this pH difference could be exploited for the targeted release of the iron within the tumor environment. That would enable the nanoparticles to attack the primary tumor directly, while inducing pyroptosis to activate the immune system," says Ploetz. "But because their properties can be readily controlled by altering the pH, they are also ideally suited for application in other contexts."
Advanced Materials 2020

Ludwig-Maximilians-Universität München

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.