A new treatment for liver cancer

April 17, 2020

In the latest issue of Molecular Therapy, Skoltech and MIT researchers have published a new combinatorial therapy for the treatment of liver cancer. Using a siRNA approach, a field in which Dr Zatsepin (Skoltech) excels, coupled with lipid nanoparticle technology developed in the Anderson laboratory (MIT), the scientists targeted proteins that are involved in apoptosis, a regulated program for cell death. In combination with chemotherapy, this caused a significant decrease in tumor load in a mouse model of hepatocellular carcinoma.

Liver cancer is the fourth most common cancer worldwide, and incidence of the disease has more than tripled since 1980. Advanced stages of this cancer are very aggressive and resistant to all conventional chemotherapies. Only recently, multiple kinase-inhibitor regorafenib and two different check-point inhibitors were approved for patients who progress after sorafenib but this only increased the overall survival by 3 months, highlighting the need to develop novel treatments for this disease.

"What we do is simply turning off a mechanism which prevents cell death, specifically in liver cells", explains Dominique Leboeuf, Skoltech PhD student and first author of this publication. "Once the mechanism is turned off, the cells become more susceptible to dying. This allows for the chemotherapy to be more efficient, killing more cancer cells, and preventing them from dividing. And although our siRNA reaches all liver cells, the cancer cells are more sensitive, because they are dividing rapidly, so they will be more affected by the treatment whereas normal cells survive."

These impressive results are the fruit of a long-lasting collaboration between Skoltech and MIT, led by professors Konstantin Piatkov, Timofei Zatsepin and Daniel Anderson. Financed by the NGP program, research was conducted in Skoltech and MIT, exploiting the strengths of both teams, and maximizing the learning experience for the students and researchers involved. "This study started from a clear idea suggested by K. Piatkov, when we just started our external joint labs in Skoltech. This project combined Konstantin's knowledge in the N-degron pathway, my expertise in siRNA and Daniel Anderson's savoir-faire in oligonucleotide drug delivery, for the development of a new therapy against liver cancer. First, Dominique confirmed that the suggested molecular mechanisms allow selective killing of tumor cells while sparing normal cells, which is crucial for further drug development. Together with the lab of Dan Anderson in MIT, we were able to show perspectives of this combinatorial approach to treat liver cancer in animal models. We believe that siRNA combinations with other drugs should provide a solution for many diseases that are difficult to treat" stated Timofei Zatsepin.

"Because the proteins targeted by our therapy are expressed in all types of cells, the combinatorial treatment developed in this study has the potential to be applied to all types of cancer. Our approach is simple and universal, and we believe that it has the possibility of eventually improving the outcome for many cancer patients in the future", commented the study lead, professor Konstantin Piatkov.
-end-


Skolkovo Institute of Science and Technology (Skoltech)

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.