Sand In Sediment Can Predict River Damage

April 17, 1998

A Johns Hopkins University scientist has devised a simple method of estimating how quickly excess river sediment--unleashed by natural or man-made land disturbances--will flow downstream. Peter R. Wilcock's technique, unveiled in the April 17 issue of the journal Science, may help prevent or correct environmental problems that occur when large amounts of fine-grained materials wash into a river.

Forest fires, logging, road construction, urban development and dam operations can send a rush of sediment into gravel-bed rivers, triggering serious consequences, says Wilcock, a professor in the Department of Geography and Environmental Engineering. For example, a surplus of sand can degrade the habitat of fish and other aquatic animals and increase the potential for flooding along a river.

For this reason, says Wilcock, river managers need to know how quickly this sand will be swept downstream, returning the gravel bed to a healthier condition. "We want to be able to predict how long it will take for the extra sediment to move through the river," he says.

But predicting how sediment will move has been difficult because the particles come in many sizes, each moving at a different pace. "The sampling necessary to analyze all of these sizes would be so extensive as to be impossible," Wilcock says. "We needed a theory that could be supported by a practical amount of field observation."

The Hopkins scientist solved this problem by dividing sediment into just two categories: sand, with grains smaller than 2 millimeters; and gravel, with grains larger than 2 millimeters. The percentages of these two sizes can be determined by wading along the river, which is much simpler and quicker than other sampling techniques, Wilcock says.

"You need to know the rate at which the sediment will be transported by the stream," he says, "and you want to know whether the fine material--the sand--will move downstream faster than the gravel."

Wilcock's method demonstrates how fast the water must move in order to first dislodge the sand and gravel from the river bed and begin then moving the material.

"Estimates of transport rate are needed to forecast the extent and duration of river impacts caused by land disturbance," Wilcock says. "This information is also needed to guide efforts to restore rivers that have received excessive sediment loadings."

An interesting consequence of this new way of looking at sediment movement through rivers is that it demonstrates that an increase in the proportion of sand in the bed can increase the rate of transport of both the sand and the gravel. "This is encouraging because it suggests that rivers have a natural ability to increase their rate of transporting sediment in response to an increase in sediment supply," Wilcock says. "This does not remove the negative impact of fine-grained sediment loading, but it may reduce and shorten it."

Wilcock's research is supported by the Stream Systems Technology Center of the U.S. Forest Service.

Related Web Site: Johns Hopkins Department of Geography and Environmental Engineering http://www.jhu.edu:80/~dogee/
-end-


Johns Hopkins University

Related Sediment Articles from Brightsurf:

The first detection of marine fish DNA in sediment sequences going back 300 years
Far too little is known about the long-term dynamics of the abundance of most macro-organism species.

Microbial diversity below seafloor is as rich as on Earth's surface
For the first time, researchers have mapped the biological diversity of marine sediment, one of Earth's largest global biomes.

Climate change could deliver more sediment and pollution to the San Francisco Bay-Delta
Climate change could deliver more silt, sand and pollution to the San Francisco Bay-Delta, along with a mix of other potential consequences and benefits, according to a new study in the AGU journal Water Resources Research.

Urine sediment test results, diagnoses vary significantly across nephrologists
A new study shows that nephrologists do not always agree on their interpretation of images from urine sediment tests, which are frequently ordered to evaluate a variety of kidney diseases.

Texas cave sediment upends meteorite explanation for global cooling
Texas researchers from the University of Houston, Baylor University and Texas A&M University have discovered evidence for why the earth cooled dramatically 13,000 years ago, dropping temperatures by about 3 degrees Centigrade.

Model links patterns in sediment to rain, uplift and sea level change
In a recent study, researchers from The University of Texas at Austin show that a natural record - sediments packed together at basin margins - offers scientists a powerful tool for understanding the forces that shaped our planet over millions of years, with implications on present day understanding.

Massive seagrass die-off leads to widespread erosion in a California estuary
The large-scale loss of eelgrass in a major California estuary -- Morro Bay -- may be causing widespread erosion.

Revealed from ancient sediment: Mangrove tolerance to rising sea levels
The growth and decline of mangrove forests during the final stages of Holocene deglaciation offers a glimpse into how the ecosystems will respond to the rapidly rising seas projected for the future, according to a new study.

New sediment record reveals instability of North Atlantic deep ocean circulation
In the future's warmer climate, large, abrupt and frequent changes in ocean ventilation may be more likely than currently assumed, according to a new study.

Study examines the impact of oil contaminated water on tubeworms and brittlestars
A new study published by Dauphin Island Sea Lab researchers adds a new layer to understanding how an oil spill could impact marine life.

Read More: Sediment News and Sediment Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.